| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ellines |  |-  ( A e. LinesEE <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) ( a =/= b /\ A = ( a Line b ) ) ) | 
						
							| 2 |  | simpll1 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> n e. NN ) | 
						
							| 3 |  | simpll2 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> a e. ( EE ` n ) ) | 
						
							| 4 |  | simpll3 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> b e. ( EE ` n ) ) | 
						
							| 5 |  | simplr |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> a =/= b ) | 
						
							| 6 |  | liness |  |-  ( ( n e. NN /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) ) -> ( a Line b ) C_ ( EE ` n ) ) | 
						
							| 7 | 2 3 4 5 6 | syl13anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> ( a Line b ) C_ ( EE ` n ) ) | 
						
							| 8 |  | simprll |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> P e. ( a Line b ) ) | 
						
							| 9 | 7 8 | sseldd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> P e. ( EE ` n ) ) | 
						
							| 10 |  | simprlr |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> Q e. ( a Line b ) ) | 
						
							| 11 | 7 10 | sseldd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> Q e. ( EE ` n ) ) | 
						
							| 12 |  | simplll |  |-  ( ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) -> P e. ( a Line b ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> P e. ( a Line b ) ) | 
						
							| 14 |  | simpll1 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> n e. NN ) | 
						
							| 15 |  | simpll2 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> a e. ( EE ` n ) ) | 
						
							| 16 |  | simpll3 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> b e. ( EE ` n ) ) | 
						
							| 17 |  | simplr |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> a =/= b ) | 
						
							| 18 |  | simprrl |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> P e. ( EE ` n ) ) | 
						
							| 19 |  | simprlr |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> P =/= a ) | 
						
							| 20 | 19 | necomd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> a =/= P ) | 
						
							| 21 |  | lineelsb2 |  |-  ( ( n e. NN /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ ( P e. ( EE ` n ) /\ a =/= P ) ) -> ( P e. ( a Line b ) -> ( a Line b ) = ( a Line P ) ) ) | 
						
							| 22 | 14 15 16 17 18 20 21 | syl132anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( P e. ( a Line b ) -> ( a Line b ) = ( a Line P ) ) ) | 
						
							| 23 | 13 22 | mpd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( a Line P ) ) | 
						
							| 24 |  | linecom |  |-  ( ( n e. NN /\ ( a e. ( EE ` n ) /\ P e. ( EE ` n ) /\ a =/= P ) ) -> ( a Line P ) = ( P Line a ) ) | 
						
							| 25 | 14 15 18 20 24 | syl13anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line P ) = ( P Line a ) ) | 
						
							| 26 | 23 25 | eqtrd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line a ) ) | 
						
							| 27 |  | neeq2 |  |-  ( Q = a -> ( P =/= Q <-> P =/= a ) ) | 
						
							| 28 | 27 | anbi2d |  |-  ( Q = a -> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) <-> ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) ) ) | 
						
							| 29 | 28 | anbi1d |  |-  ( Q = a -> ( ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) <-> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) ) | 
						
							| 30 | 29 | anbi2d |  |-  ( Q = a -> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) <-> ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) ) ) | 
						
							| 31 |  | oveq2 |  |-  ( Q = a -> ( P Line Q ) = ( P Line a ) ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( Q = a -> ( ( a Line b ) = ( P Line Q ) <-> ( a Line b ) = ( P Line a ) ) ) | 
						
							| 33 | 30 32 | imbi12d |  |-  ( Q = a -> ( ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) <-> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line a ) ) ) ) | 
						
							| 34 | 26 33 | mpbiri |  |-  ( Q = a -> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) ) | 
						
							| 35 |  | simp1 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) ) | 
						
							| 36 |  | simp2l |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) | 
						
							| 37 | 35 36 10 | syl2anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q e. ( a Line b ) ) | 
						
							| 38 |  | simp1l1 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> n e. NN ) | 
						
							| 39 |  | simp1l2 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> a e. ( EE ` n ) ) | 
						
							| 40 |  | simp1l3 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> b e. ( EE ` n ) ) | 
						
							| 41 |  | simp1r |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> a =/= b ) | 
						
							| 42 |  | simp2rr |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q e. ( EE ` n ) ) | 
						
							| 43 |  | simp3 |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q =/= a ) | 
						
							| 44 | 43 | necomd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> a =/= Q ) | 
						
							| 45 |  | lineelsb2 |  |-  ( ( n e. NN /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ ( Q e. ( EE ` n ) /\ a =/= Q ) ) -> ( Q e. ( a Line b ) -> ( a Line b ) = ( a Line Q ) ) ) | 
						
							| 46 | 38 39 40 41 42 44 45 | syl132anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( Q e. ( a Line b ) -> ( a Line b ) = ( a Line Q ) ) ) | 
						
							| 47 | 37 46 | mpd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( a Line Q ) ) | 
						
							| 48 |  | linecom |  |-  ( ( n e. NN /\ ( a e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ a =/= Q ) ) -> ( a Line Q ) = ( Q Line a ) ) | 
						
							| 49 | 38 39 42 44 48 | syl13anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line Q ) = ( Q Line a ) ) | 
						
							| 50 | 47 49 | eqtrd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( Q Line a ) ) | 
						
							| 51 | 36 | simplld |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P e. ( a Line b ) ) | 
						
							| 52 | 51 50 | eleqtrd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P e. ( Q Line a ) ) | 
						
							| 53 |  | simp2rl |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P e. ( EE ` n ) ) | 
						
							| 54 |  | simp2lr |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P =/= Q ) | 
						
							| 55 | 54 | necomd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q =/= P ) | 
						
							| 56 |  | lineelsb2 |  |-  ( ( n e. NN /\ ( Q e. ( EE ` n ) /\ a e. ( EE ` n ) /\ Q =/= a ) /\ ( P e. ( EE ` n ) /\ Q =/= P ) ) -> ( P e. ( Q Line a ) -> ( Q Line a ) = ( Q Line P ) ) ) | 
						
							| 57 | 38 42 39 43 53 55 56 | syl132anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( P e. ( Q Line a ) -> ( Q Line a ) = ( Q Line P ) ) ) | 
						
							| 58 | 52 57 | mpd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( Q Line a ) = ( Q Line P ) ) | 
						
							| 59 |  | linecom |  |-  ( ( n e. NN /\ ( Q e. ( EE ` n ) /\ P e. ( EE ` n ) /\ Q =/= P ) ) -> ( Q Line P ) = ( P Line Q ) ) | 
						
							| 60 | 38 42 53 55 59 | syl13anc |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( Q Line P ) = ( P Line Q ) ) | 
						
							| 61 | 50 58 60 | 3eqtrd |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( P Line Q ) ) | 
						
							| 62 | 61 | 3expa |  |-  ( ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( P Line Q ) ) | 
						
							| 63 | 62 | expcom |  |-  ( Q =/= a -> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) ) | 
						
							| 64 | 34 63 | pm2.61ine |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) | 
						
							| 65 | 64 | expr |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) -> ( a Line b ) = ( P Line Q ) ) ) | 
						
							| 66 | 9 11 65 | mp2and |  |-  ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> ( a Line b ) = ( P Line Q ) ) | 
						
							| 67 | 66 | ex |  |-  ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) -> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) -> ( a Line b ) = ( P Line Q ) ) ) | 
						
							| 68 |  | eleq2 |  |-  ( A = ( a Line b ) -> ( P e. A <-> P e. ( a Line b ) ) ) | 
						
							| 69 |  | eleq2 |  |-  ( A = ( a Line b ) -> ( Q e. A <-> Q e. ( a Line b ) ) ) | 
						
							| 70 | 68 69 | anbi12d |  |-  ( A = ( a Line b ) -> ( ( P e. A /\ Q e. A ) <-> ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) ) ) | 
						
							| 71 | 70 | anbi1d |  |-  ( A = ( a Line b ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) <-> ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) ) | 
						
							| 72 |  | eqeq1 |  |-  ( A = ( a Line b ) -> ( A = ( P Line Q ) <-> ( a Line b ) = ( P Line Q ) ) ) | 
						
							| 73 | 71 72 | imbi12d |  |-  ( A = ( a Line b ) -> ( ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) <-> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) -> ( a Line b ) = ( P Line Q ) ) ) ) | 
						
							| 74 | 67 73 | syl5ibrcom |  |-  ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) -> ( A = ( a Line b ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) | 
						
							| 75 | 74 | expimpd |  |-  ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) -> ( ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) | 
						
							| 76 | 75 | 3expa |  |-  ( ( ( n e. NN /\ a e. ( EE ` n ) ) /\ b e. ( EE ` n ) ) -> ( ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) | 
						
							| 77 | 76 | rexlimdva |  |-  ( ( n e. NN /\ a e. ( EE ` n ) ) -> ( E. b e. ( EE ` n ) ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) | 
						
							| 78 | 77 | rexlimivv |  |-  ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) | 
						
							| 79 | 1 78 | sylbi |  |-  ( A e. LinesEE -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) | 
						
							| 80 | 79 | 3impib |  |-  ( ( A e. LinesEE /\ ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) |