Step |
Hyp |
Ref |
Expression |
1 |
|
ellines |
|- ( A e. LinesEE <-> E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) ( a =/= b /\ A = ( a Line b ) ) ) |
2 |
|
simpll1 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> n e. NN ) |
3 |
|
simpll2 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> a e. ( EE ` n ) ) |
4 |
|
simpll3 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> b e. ( EE ` n ) ) |
5 |
|
simplr |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> a =/= b ) |
6 |
|
liness |
|- ( ( n e. NN /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) ) -> ( a Line b ) C_ ( EE ` n ) ) |
7 |
2 3 4 5 6
|
syl13anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> ( a Line b ) C_ ( EE ` n ) ) |
8 |
|
simprll |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> P e. ( a Line b ) ) |
9 |
7 8
|
sseldd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> P e. ( EE ` n ) ) |
10 |
|
simprlr |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> Q e. ( a Line b ) ) |
11 |
7 10
|
sseldd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> Q e. ( EE ` n ) ) |
12 |
|
simplll |
|- ( ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) -> P e. ( a Line b ) ) |
13 |
12
|
adantl |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> P e. ( a Line b ) ) |
14 |
|
simpll1 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> n e. NN ) |
15 |
|
simpll2 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> a e. ( EE ` n ) ) |
16 |
|
simpll3 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> b e. ( EE ` n ) ) |
17 |
|
simplr |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> a =/= b ) |
18 |
|
simprrl |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> P e. ( EE ` n ) ) |
19 |
|
simprlr |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> P =/= a ) |
20 |
19
|
necomd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> a =/= P ) |
21 |
|
lineelsb2 |
|- ( ( n e. NN /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ ( P e. ( EE ` n ) /\ a =/= P ) ) -> ( P e. ( a Line b ) -> ( a Line b ) = ( a Line P ) ) ) |
22 |
14 15 16 17 18 20 21
|
syl132anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( P e. ( a Line b ) -> ( a Line b ) = ( a Line P ) ) ) |
23 |
13 22
|
mpd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( a Line P ) ) |
24 |
|
linecom |
|- ( ( n e. NN /\ ( a e. ( EE ` n ) /\ P e. ( EE ` n ) /\ a =/= P ) ) -> ( a Line P ) = ( P Line a ) ) |
25 |
14 15 18 20 24
|
syl13anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line P ) = ( P Line a ) ) |
26 |
23 25
|
eqtrd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line a ) ) |
27 |
|
neeq2 |
|- ( Q = a -> ( P =/= Q <-> P =/= a ) ) |
28 |
27
|
anbi2d |
|- ( Q = a -> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) <-> ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) ) ) |
29 |
28
|
anbi1d |
|- ( Q = a -> ( ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) <-> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) ) |
30 |
29
|
anbi2d |
|- ( Q = a -> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) <-> ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) ) ) |
31 |
|
oveq2 |
|- ( Q = a -> ( P Line Q ) = ( P Line a ) ) |
32 |
31
|
eqeq2d |
|- ( Q = a -> ( ( a Line b ) = ( P Line Q ) <-> ( a Line b ) = ( P Line a ) ) ) |
33 |
30 32
|
imbi12d |
|- ( Q = a -> ( ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) <-> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= a ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line a ) ) ) ) |
34 |
26 33
|
mpbiri |
|- ( Q = a -> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) ) |
35 |
|
simp1 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) ) |
36 |
|
simp2l |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) |
37 |
35 36 10
|
syl2anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q e. ( a Line b ) ) |
38 |
|
simp1l1 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> n e. NN ) |
39 |
|
simp1l2 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> a e. ( EE ` n ) ) |
40 |
|
simp1l3 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> b e. ( EE ` n ) ) |
41 |
|
simp1r |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> a =/= b ) |
42 |
|
simp2rr |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q e. ( EE ` n ) ) |
43 |
|
simp3 |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q =/= a ) |
44 |
43
|
necomd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> a =/= Q ) |
45 |
|
lineelsb2 |
|- ( ( n e. NN /\ ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ ( Q e. ( EE ` n ) /\ a =/= Q ) ) -> ( Q e. ( a Line b ) -> ( a Line b ) = ( a Line Q ) ) ) |
46 |
38 39 40 41 42 44 45
|
syl132anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( Q e. ( a Line b ) -> ( a Line b ) = ( a Line Q ) ) ) |
47 |
37 46
|
mpd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( a Line Q ) ) |
48 |
|
linecom |
|- ( ( n e. NN /\ ( a e. ( EE ` n ) /\ Q e. ( EE ` n ) /\ a =/= Q ) ) -> ( a Line Q ) = ( Q Line a ) ) |
49 |
38 39 42 44 48
|
syl13anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line Q ) = ( Q Line a ) ) |
50 |
47 49
|
eqtrd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( Q Line a ) ) |
51 |
36
|
simplld |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P e. ( a Line b ) ) |
52 |
51 50
|
eleqtrd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P e. ( Q Line a ) ) |
53 |
|
simp2rl |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P e. ( EE ` n ) ) |
54 |
|
simp2lr |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> P =/= Q ) |
55 |
54
|
necomd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> Q =/= P ) |
56 |
|
lineelsb2 |
|- ( ( n e. NN /\ ( Q e. ( EE ` n ) /\ a e. ( EE ` n ) /\ Q =/= a ) /\ ( P e. ( EE ` n ) /\ Q =/= P ) ) -> ( P e. ( Q Line a ) -> ( Q Line a ) = ( Q Line P ) ) ) |
57 |
38 42 39 43 53 55 56
|
syl132anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( P e. ( Q Line a ) -> ( Q Line a ) = ( Q Line P ) ) ) |
58 |
52 57
|
mpd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( Q Line a ) = ( Q Line P ) ) |
59 |
|
linecom |
|- ( ( n e. NN /\ ( Q e. ( EE ` n ) /\ P e. ( EE ` n ) /\ Q =/= P ) ) -> ( Q Line P ) = ( P Line Q ) ) |
60 |
38 42 53 55 59
|
syl13anc |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( Q Line P ) = ( P Line Q ) ) |
61 |
50 58 60
|
3eqtrd |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( P Line Q ) ) |
62 |
61
|
3expa |
|- ( ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) /\ Q =/= a ) -> ( a Line b ) = ( P Line Q ) ) |
63 |
62
|
expcom |
|- ( Q =/= a -> ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) ) |
64 |
34 63
|
pm2.61ine |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) /\ ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) ) ) -> ( a Line b ) = ( P Line Q ) ) |
65 |
64
|
expr |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> ( ( P e. ( EE ` n ) /\ Q e. ( EE ` n ) ) -> ( a Line b ) = ( P Line Q ) ) ) |
66 |
9 11 65
|
mp2and |
|- ( ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) /\ ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) -> ( a Line b ) = ( P Line Q ) ) |
67 |
66
|
ex |
|- ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) -> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) -> ( a Line b ) = ( P Line Q ) ) ) |
68 |
|
eleq2 |
|- ( A = ( a Line b ) -> ( P e. A <-> P e. ( a Line b ) ) ) |
69 |
|
eleq2 |
|- ( A = ( a Line b ) -> ( Q e. A <-> Q e. ( a Line b ) ) ) |
70 |
68 69
|
anbi12d |
|- ( A = ( a Line b ) -> ( ( P e. A /\ Q e. A ) <-> ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) ) ) |
71 |
70
|
anbi1d |
|- ( A = ( a Line b ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) <-> ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) ) ) |
72 |
|
eqeq1 |
|- ( A = ( a Line b ) -> ( A = ( P Line Q ) <-> ( a Line b ) = ( P Line Q ) ) ) |
73 |
71 72
|
imbi12d |
|- ( A = ( a Line b ) -> ( ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) <-> ( ( ( P e. ( a Line b ) /\ Q e. ( a Line b ) ) /\ P =/= Q ) -> ( a Line b ) = ( P Line Q ) ) ) ) |
74 |
67 73
|
syl5ibrcom |
|- ( ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) /\ a =/= b ) -> ( A = ( a Line b ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) |
75 |
74
|
expimpd |
|- ( ( n e. NN /\ a e. ( EE ` n ) /\ b e. ( EE ` n ) ) -> ( ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) |
76 |
75
|
3expa |
|- ( ( ( n e. NN /\ a e. ( EE ` n ) ) /\ b e. ( EE ` n ) ) -> ( ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) |
77 |
76
|
rexlimdva |
|- ( ( n e. NN /\ a e. ( EE ` n ) ) -> ( E. b e. ( EE ` n ) ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) ) |
78 |
77
|
rexlimivv |
|- ( E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) ( a =/= b /\ A = ( a Line b ) ) -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) |
79 |
1 78
|
sylbi |
|- ( A e. LinesEE -> ( ( ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) ) |
80 |
79
|
3impib |
|- ( ( A e. LinesEE /\ ( P e. A /\ Q e. A ) /\ P =/= Q ) -> A = ( P Line Q ) ) |