| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 2 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> S e. ( EE ` N ) ) | 
						
							| 3 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> P e. ( EE ` N ) ) | 
						
							| 4 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> Q e. ( EE ` N ) ) | 
						
							| 5 |  | brcolinear |  |-  ( ( N e. NN /\ ( S e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( S Colinear <. P , Q >. <-> ( S Btwn <. P , Q >. \/ P Btwn <. Q , S >. \/ Q Btwn <. S , P >. ) ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( S Colinear <. P , Q >. <-> ( S Btwn <. P , Q >. \/ P Btwn <. Q , S >. \/ Q Btwn <. S , P >. ) ) ) | 
						
							| 7 | 6 | biimpa |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Colinear <. P , Q >. ) -> ( S Btwn <. P , Q >. \/ P Btwn <. Q , S >. \/ Q Btwn <. S , P >. ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 9 |  | brcolinear |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 10 | 1 8 3 4 9 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 12 |  | btwnconn3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ S e. ( EE ` N ) ) /\ ( x e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( ( S Btwn <. P , Q >. /\ x Btwn <. P , Q >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 13 | 1 3 2 8 4 12 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( S Btwn <. P , Q >. /\ x Btwn <. P , Q >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , Q >. ) ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) | 
						
							| 15 |  | btwncolinear3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ x e. ( EE ` N ) /\ S e. ( EE ` N ) ) ) -> ( S Btwn <. P , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 16 | 1 3 8 2 15 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( S Btwn <. P , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 17 |  | btwncolinear5 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ S e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( x Btwn <. P , S >. -> x Colinear <. P , S >. ) ) | 
						
							| 18 | 1 3 2 8 17 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. P , S >. -> x Colinear <. P , S >. ) ) | 
						
							| 19 | 16 18 | jaod |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) -> x Colinear <. P , S >. ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , Q >. ) ) -> ( ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) -> x Colinear <. P , S >. ) ) | 
						
							| 21 | 14 20 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , Q >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 22 | 21 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , S >. ) ) | 
						
							| 23 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. Q , x >. ) ) -> S Btwn <. P , Q >. ) | 
						
							| 24 | 1 2 3 4 23 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. Q , x >. ) ) -> S Btwn <. Q , P >. ) | 
						
							| 25 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 26 | 1 4 2 3 8 24 25 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. S , x >. ) | 
						
							| 27 |  | btwncolinear4 |  |-  ( ( N e. NN /\ ( S e. ( EE ` N ) /\ x e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. S , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 28 | 1 2 8 3 27 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. S , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. Q , x >. ) ) -> ( P Btwn <. S , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 30 | 26 29 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. Q , x >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 31 | 30 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 32 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ Q Btwn <. x , P >. ) ) -> S Btwn <. P , Q >. ) | 
						
							| 33 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. x , P >. ) | 
						
							| 34 | 1 4 8 3 33 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. P , x >. ) | 
						
							| 35 | 1 3 2 4 8 32 34 | btwnexchand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ Q Btwn <. x , P >. ) ) -> S Btwn <. P , x >. ) | 
						
							| 36 | 16 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ Q Btwn <. x , P >. ) ) -> ( S Btwn <. P , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 37 | 35 36 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ Q Btwn <. x , P >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 38 | 37 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( Q Btwn <. x , P >. -> x Colinear <. P , S >. ) ) | 
						
							| 39 | 22 31 38 | 3jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) -> x Colinear <. P , S >. ) ) | 
						
							| 40 | 11 39 | sylbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( x Colinear <. P , Q >. -> x Colinear <. P , S >. ) ) | 
						
							| 41 |  | brcolinear |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ P e. ( EE ` N ) /\ S e. ( EE ` N ) ) ) -> ( x Colinear <. P , S >. <-> ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) ) ) | 
						
							| 42 | 1 8 3 2 41 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , S >. <-> ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( x Colinear <. P , S >. <-> ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) ) ) | 
						
							| 44 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , S >. ) ) -> x Btwn <. P , S >. ) | 
						
							| 45 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , S >. ) ) -> S Btwn <. P , Q >. ) | 
						
							| 46 | 1 3 8 2 4 44 45 | btwnexchand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , S >. ) ) -> x Btwn <. P , Q >. ) | 
						
							| 47 |  | btwncolinear5 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 48 | 1 3 4 8 47 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , S >. ) ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 50 | 46 49 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ x Btwn <. P , S >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 51 | 50 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( x Btwn <. P , S >. -> x Colinear <. P , Q >. ) ) | 
						
							| 52 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> P =/= S ) | 
						
							| 53 | 52 | necomd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> S =/= P ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> S =/= P ) | 
						
							| 55 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> S Btwn <. P , Q >. ) | 
						
							| 56 | 1 2 3 4 55 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> S Btwn <. Q , P >. ) | 
						
							| 57 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> P Btwn <. S , x >. ) | 
						
							| 58 |  | btwnouttr2 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ S e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( S =/= P /\ S Btwn <. Q , P >. /\ P Btwn <. S , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 59 | 1 4 2 3 8 58 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( S =/= P /\ S Btwn <. Q , P >. /\ P Btwn <. S , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> ( ( S =/= P /\ S Btwn <. Q , P >. /\ P Btwn <. S , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 61 | 54 56 57 60 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 62 |  | btwncolinear4 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 63 | 1 4 8 3 62 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 65 | 61 64 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ P Btwn <. S , x >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 66 | 65 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( P Btwn <. S , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 67 | 52 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> P =/= S ) | 
						
							| 68 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> S Btwn <. P , Q >. ) | 
						
							| 69 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> S Btwn <. x , P >. ) | 
						
							| 70 | 1 2 8 3 69 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> S Btwn <. P , x >. ) | 
						
							| 71 |  | btwnconn1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ S e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( P =/= S /\ S Btwn <. P , Q >. /\ S Btwn <. P , x >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 72 | 1 3 2 4 8 71 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( P =/= S /\ S Btwn <. P , Q >. /\ S Btwn <. P , x >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> ( ( P =/= S /\ S Btwn <. P , Q >. /\ S Btwn <. P , x >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 74 | 67 68 70 73 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) | 
						
							| 75 |  | btwncolinear3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ x e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( Q Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 76 | 1 3 8 4 75 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( Q Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 77 | 76 48 | jaod |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 79 | 74 78 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. /\ S Btwn <. x , P >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 80 | 79 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( S Btwn <. x , P >. -> x Colinear <. P , Q >. ) ) | 
						
							| 81 | 51 66 80 | 3jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 82 | 43 81 | sylbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( x Colinear <. P , S >. -> x Colinear <. P , Q >. ) ) | 
						
							| 83 | 40 82 | impbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Btwn <. P , Q >. ) -> ( x Colinear <. P , Q >. <-> x Colinear <. P , S >. ) ) | 
						
							| 84 | 10 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 85 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , Q >. ) ) -> x Btwn <. P , Q >. ) | 
						
							| 86 | 1 8 3 4 85 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , Q >. ) ) -> x Btwn <. Q , P >. ) | 
						
							| 87 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , Q >. ) ) -> P Btwn <. Q , S >. ) | 
						
							| 88 | 1 4 8 3 2 86 87 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , Q >. ) ) -> P Btwn <. x , S >. ) | 
						
							| 89 |  | btwncolinear2 |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ S e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. x , S >. -> x Colinear <. P , S >. ) ) | 
						
							| 90 | 1 8 2 3 89 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. x , S >. -> x Colinear <. P , S >. ) ) | 
						
							| 91 | 90 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , Q >. ) ) -> ( P Btwn <. x , S >. -> x Colinear <. P , S >. ) ) | 
						
							| 92 | 88 91 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , Q >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 93 | 92 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , S >. ) ) | 
						
							| 94 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> P =/= Q ) | 
						
							| 95 | 94 | necomd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> Q =/= P ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) ) -> Q =/= P ) | 
						
							| 97 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , S >. ) | 
						
							| 98 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 99 |  | btwnconn2 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( S e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( Q =/= P /\ P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 100 | 1 4 3 2 8 99 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( Q =/= P /\ P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) ) -> ( ( Q =/= P /\ P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 102 | 96 97 98 101 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) | 
						
							| 103 | 19 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) ) -> ( ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) -> x Colinear <. P , S >. ) ) | 
						
							| 104 | 102 103 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. Q , x >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 105 | 104 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 106 | 94 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> P =/= Q ) | 
						
							| 107 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> P Btwn <. Q , S >. ) | 
						
							| 108 | 1 3 4 2 107 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> P Btwn <. S , Q >. ) | 
						
							| 109 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. x , P >. ) | 
						
							| 110 | 1 4 8 3 109 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. P , x >. ) | 
						
							| 111 |  | btwnouttr |  |-  ( ( N e. NN /\ ( S e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( P =/= Q /\ P Btwn <. S , Q >. /\ Q Btwn <. P , x >. ) -> P Btwn <. S , x >. ) ) | 
						
							| 112 | 1 2 3 4 8 111 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( P =/= Q /\ P Btwn <. S , Q >. /\ Q Btwn <. P , x >. ) -> P Btwn <. S , x >. ) ) | 
						
							| 113 | 112 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> ( ( P =/= Q /\ P Btwn <. S , Q >. /\ Q Btwn <. P , x >. ) -> P Btwn <. S , x >. ) ) | 
						
							| 114 | 106 108 110 113 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> P Btwn <. S , x >. ) | 
						
							| 115 | 28 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> ( P Btwn <. S , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 116 | 114 115 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ Q Btwn <. x , P >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 117 | 116 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( Q Btwn <. x , P >. -> x Colinear <. P , S >. ) ) | 
						
							| 118 | 93 105 117 | 3jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) -> x Colinear <. P , S >. ) ) | 
						
							| 119 | 84 118 | sylbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( x Colinear <. P , Q >. -> x Colinear <. P , S >. ) ) | 
						
							| 120 | 42 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( x Colinear <. P , S >. <-> ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) ) ) | 
						
							| 121 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , S >. ) ) -> x Btwn <. P , S >. ) | 
						
							| 122 | 1 8 3 2 121 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , S >. ) ) -> x Btwn <. S , P >. ) | 
						
							| 123 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , S >. ) ) -> P Btwn <. Q , S >. ) | 
						
							| 124 | 1 3 4 2 123 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , S >. ) ) -> P Btwn <. S , Q >. ) | 
						
							| 125 | 1 2 8 3 4 122 124 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , S >. ) ) -> P Btwn <. x , Q >. ) | 
						
							| 126 |  | btwncolinear2 |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 127 | 1 8 4 3 126 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , S >. ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 129 | 125 128 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ x Btwn <. P , S >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 130 | 129 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( x Btwn <. P , S >. -> x Colinear <. P , Q >. ) ) | 
						
							| 131 | 53 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> S =/= P ) | 
						
							| 132 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> P Btwn <. Q , S >. ) | 
						
							| 133 | 1 3 4 2 132 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> P Btwn <. S , Q >. ) | 
						
							| 134 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> P Btwn <. S , x >. ) | 
						
							| 135 |  | btwnconn2 |  |-  ( ( N e. NN /\ ( S e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( S =/= P /\ P Btwn <. S , Q >. /\ P Btwn <. S , x >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 136 | 1 2 3 4 8 135 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( S =/= P /\ P Btwn <. S , Q >. /\ P Btwn <. S , x >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 137 | 136 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> ( ( S =/= P /\ P Btwn <. S , Q >. /\ P Btwn <. S , x >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 138 | 131 133 134 137 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) | 
						
							| 139 | 77 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 140 | 138 139 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ P Btwn <. S , x >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 141 | 140 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( P Btwn <. S , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 142 | 52 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> P =/= S ) | 
						
							| 143 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> P Btwn <. Q , S >. ) | 
						
							| 144 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> S Btwn <. x , P >. ) | 
						
							| 145 | 1 2 8 3 144 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> S Btwn <. P , x >. ) | 
						
							| 146 |  | btwnouttr |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( S e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( P =/= S /\ P Btwn <. Q , S >. /\ S Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 147 | 1 4 3 2 8 146 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( P =/= S /\ P Btwn <. Q , S >. /\ S Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 148 | 147 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> ( ( P =/= S /\ P Btwn <. Q , S >. /\ S Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 149 | 142 143 145 148 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 150 | 63 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 151 | 149 150 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , S >. /\ S Btwn <. x , P >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 152 | 151 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( S Btwn <. x , P >. -> x Colinear <. P , Q >. ) ) | 
						
							| 153 | 130 141 152 | 3jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 154 | 120 153 | sylbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( x Colinear <. P , S >. -> x Colinear <. P , Q >. ) ) | 
						
							| 155 | 119 154 | impbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , S >. ) -> ( x Colinear <. P , Q >. <-> x Colinear <. P , S >. ) ) | 
						
							| 156 | 10 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 157 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , Q >. ) ) -> x Btwn <. P , Q >. ) | 
						
							| 158 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , Q >. ) ) -> Q Btwn <. S , P >. ) | 
						
							| 159 | 1 4 2 3 158 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , Q >. ) ) -> Q Btwn <. P , S >. ) | 
						
							| 160 | 1 3 8 4 2 157 159 | btwnexchand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , Q >. ) ) -> x Btwn <. P , S >. ) | 
						
							| 161 | 18 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , Q >. ) ) -> ( x Btwn <. P , S >. -> x Colinear <. P , S >. ) ) | 
						
							| 162 | 160 161 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , Q >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 163 | 162 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , S >. ) ) | 
						
							| 164 | 95 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) ) -> Q =/= P ) | 
						
							| 165 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) ) -> Q Btwn <. S , P >. ) | 
						
							| 166 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 167 |  | btwnouttr2 |  |-  ( ( N e. NN /\ ( S e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( P e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( Q =/= P /\ Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) -> P Btwn <. S , x >. ) ) | 
						
							| 168 | 1 2 4 3 8 167 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( Q =/= P /\ Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) -> P Btwn <. S , x >. ) ) | 
						
							| 169 | 168 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) ) -> ( ( Q =/= P /\ Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) -> P Btwn <. S , x >. ) ) | 
						
							| 170 | 164 165 166 169 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. S , x >. ) | 
						
							| 171 | 28 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) ) -> ( P Btwn <. S , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 172 | 170 171 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. Q , x >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 173 | 172 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , S >. ) ) | 
						
							| 174 | 94 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> P =/= Q ) | 
						
							| 175 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. S , P >. ) | 
						
							| 176 | 1 4 2 3 175 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. P , S >. ) | 
						
							| 177 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. x , P >. ) | 
						
							| 178 | 1 4 8 3 177 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> Q Btwn <. P , x >. ) | 
						
							| 179 |  | btwnconn1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( S e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( P =/= Q /\ Q Btwn <. P , S >. /\ Q Btwn <. P , x >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 180 | 1 3 4 2 8 179 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( P =/= Q /\ Q Btwn <. P , S >. /\ Q Btwn <. P , x >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 181 | 180 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> ( ( P =/= Q /\ Q Btwn <. P , S >. /\ Q Btwn <. P , x >. ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) ) | 
						
							| 182 | 174 176 178 181 | mp3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) ) | 
						
							| 183 | 19 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> ( ( S Btwn <. P , x >. \/ x Btwn <. P , S >. ) -> x Colinear <. P , S >. ) ) | 
						
							| 184 | 182 183 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ Q Btwn <. x , P >. ) ) -> x Colinear <. P , S >. ) | 
						
							| 185 | 184 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( Q Btwn <. x , P >. -> x Colinear <. P , S >. ) ) | 
						
							| 186 | 163 173 185 | 3jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) -> x Colinear <. P , S >. ) ) | 
						
							| 187 | 156 186 | sylbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( x Colinear <. P , Q >. -> x Colinear <. P , S >. ) ) | 
						
							| 188 | 42 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( x Colinear <. P , S >. <-> ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) ) ) | 
						
							| 189 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , S >. ) ) -> Q Btwn <. S , P >. ) | 
						
							| 190 | 1 4 2 3 189 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , S >. ) ) -> Q Btwn <. P , S >. ) | 
						
							| 191 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , S >. ) ) -> x Btwn <. P , S >. ) | 
						
							| 192 |  | btwnconn3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) /\ ( x e. ( EE ` N ) /\ S e. ( EE ` N ) ) ) -> ( ( Q Btwn <. P , S >. /\ x Btwn <. P , S >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 193 | 1 3 4 8 2 192 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) -> ( ( Q Btwn <. P , S >. /\ x Btwn <. P , S >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 194 | 193 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , S >. ) ) -> ( ( Q Btwn <. P , S >. /\ x Btwn <. P , S >. ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 195 | 190 191 194 | mp2and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , S >. ) ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) | 
						
							| 196 | 77 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , S >. ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 197 | 195 196 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ x Btwn <. P , S >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 198 | 197 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( x Btwn <. P , S >. -> x Colinear <. P , Q >. ) ) | 
						
							| 199 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. S , x >. ) ) -> Q Btwn <. S , P >. ) | 
						
							| 200 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. S , x >. ) ) -> P Btwn <. S , x >. ) | 
						
							| 201 | 1 2 4 3 8 199 200 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. S , x >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 202 | 63 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. S , x >. ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 203 | 201 202 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ P Btwn <. S , x >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 204 | 203 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( P Btwn <. S , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 205 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ S Btwn <. x , P >. ) ) -> Q Btwn <. S , P >. ) | 
						
							| 206 | 1 4 2 3 205 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ S Btwn <. x , P >. ) ) -> Q Btwn <. P , S >. ) | 
						
							| 207 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ S Btwn <. x , P >. ) ) -> S Btwn <. x , P >. ) | 
						
							| 208 | 1 2 8 3 207 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ S Btwn <. x , P >. ) ) -> S Btwn <. P , x >. ) | 
						
							| 209 | 1 3 4 2 8 206 208 | btwnexchand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ S Btwn <. x , P >. ) ) -> Q Btwn <. P , x >. ) | 
						
							| 210 | 76 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ S Btwn <. x , P >. ) ) -> ( Q Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 211 | 209 210 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( Q Btwn <. S , P >. /\ S Btwn <. x , P >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 212 | 211 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( S Btwn <. x , P >. -> x Colinear <. P , Q >. ) ) | 
						
							| 213 | 198 204 212 | 3jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( ( x Btwn <. P , S >. \/ P Btwn <. S , x >. \/ S Btwn <. x , P >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 214 | 188 213 | sylbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( x Colinear <. P , S >. -> x Colinear <. P , Q >. ) ) | 
						
							| 215 | 187 214 | impbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ Q Btwn <. S , P >. ) -> ( x Colinear <. P , Q >. <-> x Colinear <. P , S >. ) ) | 
						
							| 216 | 83 155 215 | 3jaodan |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S Btwn <. P , Q >. \/ P Btwn <. Q , S >. \/ Q Btwn <. S , P >. ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. P , S >. ) ) | 
						
							| 217 | 7 216 | syldan |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ S Colinear <. P , Q >. ) -> ( x Colinear <. P , Q >. <-> x Colinear <. P , S >. ) ) | 
						
							| 218 | 217 | adantrl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ x e. ( EE ` N ) ) /\ ( S e. ( EE ` N ) /\ S Colinear <. P , Q >. ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. P , S >. ) ) | 
						
							| 219 | 218 | an32s |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ ( S e. ( EE ` N ) /\ S Colinear <. P , Q >. ) ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. P , S >. ) ) | 
						
							| 220 | 219 | rabbidva |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) /\ ( S e. ( EE ` N ) /\ S Colinear <. P , Q >. ) ) -> { x e. ( EE ` N ) | x Colinear <. P , Q >. } = { x e. ( EE ` N ) | x Colinear <. P , S >. } ) | 
						
							| 221 | 220 | ex |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> ( ( S e. ( EE ` N ) /\ S Colinear <. P , Q >. ) -> { x e. ( EE ` N ) | x Colinear <. P , Q >. } = { x e. ( EE ` N ) | x Colinear <. P , S >. } ) ) | 
						
							| 222 |  | fvline2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 223 | 222 | 3adant3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 224 | 223 | eleq2d |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> ( S e. ( P Line Q ) <-> S e. { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) ) | 
						
							| 225 |  | breq1 |  |-  ( x = S -> ( x Colinear <. P , Q >. <-> S Colinear <. P , Q >. ) ) | 
						
							| 226 | 225 | elrab |  |-  ( S e. { x e. ( EE ` N ) | x Colinear <. P , Q >. } <-> ( S e. ( EE ` N ) /\ S Colinear <. P , Q >. ) ) | 
						
							| 227 | 224 226 | bitrdi |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> ( S e. ( P Line Q ) <-> ( S e. ( EE ` N ) /\ S Colinear <. P , Q >. ) ) ) | 
						
							| 228 |  | simp1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> N e. NN ) | 
						
							| 229 |  | simp21 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> P e. ( EE ` N ) ) | 
						
							| 230 |  | simp3l |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> S e. ( EE ` N ) ) | 
						
							| 231 |  | simp3r |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> P =/= S ) | 
						
							| 232 |  | fvline2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ S e. ( EE ` N ) /\ P =/= S ) ) -> ( P Line S ) = { x e. ( EE ` N ) | x Colinear <. P , S >. } ) | 
						
							| 233 | 228 229 230 231 232 | syl13anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> ( P Line S ) = { x e. ( EE ` N ) | x Colinear <. P , S >. } ) | 
						
							| 234 | 223 233 | eqeq12d |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> ( ( P Line Q ) = ( P Line S ) <-> { x e. ( EE ` N ) | x Colinear <. P , Q >. } = { x e. ( EE ` N ) | x Colinear <. P , S >. } ) ) | 
						
							| 235 | 221 227 234 | 3imtr4d |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ ( S e. ( EE ` N ) /\ P =/= S ) ) -> ( S e. ( P Line Q ) -> ( P Line Q ) = ( P Line S ) ) ) |