Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
2 |
|
simpl3l |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
simpl21 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
simpl22 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
brcolinear |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ↔ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∨ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) ) ) |
6 |
1 2 3 4 5
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ↔ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∨ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) ) ) |
7 |
6
|
biimpa |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∨ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
|
brcolinear |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
10 |
1 8 3 4 9
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
12 |
|
btwnconn3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
13 |
1 3 2 8 4 12
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) |
15 |
|
btwncolinear3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
16 |
1 3 8 2 15
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
17 |
|
btwncolinear5 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
18 |
1 3 2 8 17
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
19 |
16 18
|
jaod |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → ( ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
21 |
14 20
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
22 |
21
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
23 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) |
24 |
1 2 3 4 23
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑆 Btwn 〈 𝑄 , 𝑃 〉 ) |
25 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) |
26 |
1 4 2 3 8 24 25
|
btwnexch3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) |
27 |
|
btwncolinear4 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
28 |
1 2 8 3 27
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
30 |
26 29
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
31 |
30
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
32 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) |
33 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) |
34 |
1 4 8 3 33
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) |
35 |
1 3 2 4 8 32 34
|
btwnexchand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) |
36 |
16
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
37 |
35 36
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
38 |
37
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑄 Btwn 〈 𝑥 , 𝑃 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
39 |
22 31 38
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
40 |
11 39
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
41 |
|
brcolinear |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
42 |
1 8 3 2 41
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
44 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) |
45 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) |
46 |
1 3 8 2 4 44 45
|
btwnexchand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) |
47 |
|
btwncolinear5 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
48 |
1 3 4 8 47
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
49 |
48
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
50 |
46 49
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
51 |
50
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
52 |
|
simpl3r |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑃 ≠ 𝑆 ) |
53 |
52
|
necomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑆 ≠ 𝑃 ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑆 ≠ 𝑃 ) |
55 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) |
56 |
1 2 3 4 55
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑆 Btwn 〈 𝑄 , 𝑃 〉 ) |
57 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) |
58 |
|
btwnouttr2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑆 ≠ 𝑃 ∧ 𝑆 Btwn 〈 𝑄 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) |
59 |
1 4 2 3 8 58
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑆 ≠ 𝑃 ∧ 𝑆 Btwn 〈 𝑄 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) |
60 |
59
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → ( ( 𝑆 ≠ 𝑃 ∧ 𝑆 Btwn 〈 𝑄 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) |
61 |
54 56 57 60
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) |
62 |
|
btwncolinear4 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
63 |
1 4 8 3 62
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
65 |
61 64
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
66 |
65
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
67 |
52
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 ≠ 𝑆 ) |
68 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) |
69 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) |
70 |
1 2 8 3 69
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) |
71 |
|
btwnconn1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑃 ≠ 𝑆 ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
72 |
1 3 2 4 8 71
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑃 ≠ 𝑆 ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
73 |
72
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( ( 𝑃 ≠ 𝑆 ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
74 |
67 68 70 73
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) |
75 |
|
btwncolinear3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
76 |
1 3 8 4 75
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
77 |
76 48
|
jaod |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
79 |
74 78
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
80 |
79
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑆 Btwn 〈 𝑥 , 𝑃 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
81 |
51 66 80
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
82 |
43 81
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
83 |
40 82
|
impbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
84 |
10
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
85 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) |
86 |
1 8 3 4 85
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑥 Btwn 〈 𝑄 , 𝑃 〉 ) |
87 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) |
88 |
1 4 8 3 2 86 87
|
btwnexch3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑃 Btwn 〈 𝑥 , 𝑆 〉 ) |
89 |
|
btwncolinear2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 Btwn 〈 𝑥 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
90 |
1 8 2 3 89
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑃 Btwn 〈 𝑥 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
91 |
90
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → ( 𝑃 Btwn 〈 𝑥 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
92 |
88 91
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
93 |
92
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
94 |
|
simpl23 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑃 ≠ 𝑄 ) |
95 |
94
|
necomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑄 ≠ 𝑃 ) |
96 |
95
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑄 ≠ 𝑃 ) |
97 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) |
98 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) |
99 |
|
btwnconn2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑄 ≠ 𝑃 ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
100 |
1 4 3 2 8 99
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑄 ≠ 𝑃 ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
101 |
100
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → ( ( 𝑄 ≠ 𝑃 ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
102 |
96 97 98 101
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) |
103 |
19
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → ( ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
104 |
102 103
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
105 |
104
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
106 |
94
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 ≠ 𝑄 ) |
107 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) |
108 |
1 3 4 2 107
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ) |
109 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) |
110 |
1 4 8 3 109
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) |
111 |
|
btwnouttr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) |
112 |
1 2 3 4 8 111
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) |
113 |
112
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ∧ 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) |
114 |
106 108 110 113
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) |
115 |
28
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
116 |
114 115
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
117 |
116
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑄 Btwn 〈 𝑥 , 𝑃 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
118 |
93 105 117
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
119 |
84 118
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
120 |
42
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
121 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) |
122 |
1 8 3 2 121
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Btwn 〈 𝑆 , 𝑃 〉 ) |
123 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) |
124 |
1 3 4 2 123
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ) |
125 |
1 2 8 3 4 122 124
|
btwnexch3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑃 Btwn 〈 𝑥 , 𝑄 〉 ) |
126 |
|
btwncolinear2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑃 Btwn 〈 𝑥 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
127 |
1 8 4 3 126
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑃 Btwn 〈 𝑥 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
128 |
127
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → ( 𝑃 Btwn 〈 𝑥 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
129 |
125 128
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
130 |
129
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
131 |
53
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑆 ≠ 𝑃 ) |
132 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) |
133 |
1 3 4 2 132
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ) |
134 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) |
135 |
|
btwnconn2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑆 ≠ 𝑃 ∧ 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
136 |
1 2 3 4 8 135
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑆 ≠ 𝑃 ∧ 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
137 |
136
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → ( ( 𝑆 ≠ 𝑃 ∧ 𝑃 Btwn 〈 𝑆 , 𝑄 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
138 |
131 133 134 137
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) |
139 |
77
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → ( ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
140 |
138 139
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
141 |
140
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
142 |
52
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 ≠ 𝑆 ) |
143 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) |
144 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) |
145 |
1 2 8 3 144
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) |
146 |
|
btwnouttr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑃 ≠ 𝑆 ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) |
147 |
1 4 3 2 8 146
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑃 ≠ 𝑆 ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) |
148 |
147
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( ( 𝑃 ≠ 𝑆 ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) |
149 |
142 143 145 148
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) |
150 |
63
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
151 |
149 150
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
152 |
151
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑆 Btwn 〈 𝑥 , 𝑃 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
153 |
130 141 152
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
154 |
120 153
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
155 |
119 154
|
impbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
156 |
10
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
157 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) |
158 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) |
159 |
1 4 2 3 158
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ) |
160 |
1 3 8 4 2 157 159
|
btwnexchand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) |
161 |
18
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
162 |
160 161
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
163 |
162
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
164 |
95
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑄 ≠ 𝑃 ) |
165 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) |
166 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) |
167 |
|
btwnouttr2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑄 ≠ 𝑃 ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) |
168 |
1 2 4 3 8 167
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑄 ≠ 𝑃 ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) |
169 |
168
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → ( ( 𝑄 ≠ 𝑃 ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) |
170 |
164 165 166 169
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) |
171 |
28
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
172 |
170 171
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
173 |
172
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
174 |
94
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑃 ≠ 𝑄 ) |
175 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) |
176 |
1 4 2 3 175
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ) |
177 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) |
178 |
1 4 8 3 177
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) |
179 |
|
btwnconn1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
180 |
1 3 4 2 8 179
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
181 |
180
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ∧ 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) ) |
182 |
174 176 178 181
|
mp3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) |
183 |
19
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( ( 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
184 |
182 183
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) |
185 |
184
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑄 Btwn 〈 𝑥 , 𝑃 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
186 |
163 173 185
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( ( 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ∨ 𝑄 Btwn 〈 𝑥 , 𝑃 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
187 |
156 186
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 → 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
188 |
42
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ↔ ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) ) |
189 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) |
190 |
1 4 2 3 189
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ) |
191 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) |
192 |
|
btwnconn3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
193 |
1 3 4 8 2 192
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
194 |
193
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → ( ( 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) ) |
195 |
190 191 194
|
mp2and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) ) |
196 |
77
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → ( ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ∨ 𝑥 Btwn 〈 𝑃 , 𝑄 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
197 |
195 196
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
198 |
197
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
199 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) |
200 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) |
201 |
1 2 4 3 8 199 200
|
btwnexch3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑃 Btwn 〈 𝑄 , 𝑥 〉 ) |
202 |
63
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → ( 𝑃 Btwn 〈 𝑄 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
203 |
201 202
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
204 |
203
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑃 Btwn 〈 𝑆 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
205 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) |
206 |
1 4 2 3 205
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑆 〉 ) |
207 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) |
208 |
1 2 8 3 207
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑆 Btwn 〈 𝑃 , 𝑥 〉 ) |
209 |
1 3 4 2 8 206 208
|
btwnexchand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑄 Btwn 〈 𝑃 , 𝑥 〉 ) |
210 |
76
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → ( 𝑄 Btwn 〈 𝑃 , 𝑥 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
211 |
209 210
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ∧ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) |
212 |
211
|
expr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑆 Btwn 〈 𝑥 , 𝑃 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
213 |
198 204 212
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( ( 𝑥 Btwn 〈 𝑃 , 𝑆 〉 ∨ 𝑃 Btwn 〈 𝑆 , 𝑥 〉 ∨ 𝑆 Btwn 〈 𝑥 , 𝑃 〉 ) → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
214 |
188 213
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑆 〉 → 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
215 |
187 214
|
impbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
216 |
83 155 215
|
3jaodan |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 Btwn 〈 𝑃 , 𝑄 〉 ∨ 𝑃 Btwn 〈 𝑄 , 𝑆 〉 ∨ 𝑄 Btwn 〈 𝑆 , 𝑃 〉 ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
217 |
7 216
|
syldan |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
218 |
217
|
adantrl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
219 |
218
|
an32s |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 ) ) |
220 |
219
|
rabbidva |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) ) → { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 } ) |
221 |
220
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) → { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 } ) ) |
222 |
|
fvline2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ( 𝑃 Line 𝑄 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ) |
223 |
222
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( 𝑃 Line 𝑄 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ) |
224 |
223
|
eleq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( 𝑆 ∈ ( 𝑃 Line 𝑄 ) ↔ 𝑆 ∈ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ) ) |
225 |
|
breq1 |
⊢ ( 𝑥 = 𝑆 → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
226 |
225
|
elrab |
⊢ ( 𝑆 ∈ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ↔ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
227 |
224 226
|
bitrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( 𝑆 ∈ ( 𝑃 Line 𝑄 ) ↔ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 Colinear 〈 𝑃 , 𝑄 〉 ) ) ) |
228 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → 𝑁 ∈ ℕ ) |
229 |
|
simp21 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
230 |
|
simp3l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ) |
231 |
|
simp3r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → 𝑃 ≠ 𝑆 ) |
232 |
|
fvline2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( 𝑃 Line 𝑆 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 } ) |
233 |
228 229 230 231 232
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( 𝑃 Line 𝑆 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 } ) |
234 |
223 233
|
eqeq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( ( 𝑃 Line 𝑄 ) = ( 𝑃 Line 𝑆 ) ↔ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑆 〉 } ) ) |
235 |
221 227 234
|
3imtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑆 ) ) → ( 𝑆 ∈ ( 𝑃 Line 𝑄 ) → ( 𝑃 Line 𝑄 ) = ( 𝑃 Line 𝑆 ) ) ) |