Metamath Proof Explorer


Theorem fvline2

Description: Alternate definition of a line. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvline2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )

Proof

Step Hyp Ref Expression
1 fvline ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )
2 liness ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) ⊆ ( 𝔼 ‘ 𝑁 ) )
3 1 2 eqsstrrd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } ⊆ ( 𝔼 ‘ 𝑁 ) )
4 df-ss ( { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } ⊆ ( 𝔼 ‘ 𝑁 ) ↔ ( { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } ∩ ( 𝔼 ‘ 𝑁 ) ) = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )
5 3 4 sylib ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } ∩ ( 𝔼 ‘ 𝑁 ) ) = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )
6 1 5 eqtr4d ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = ( { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } ∩ ( 𝔼 ‘ 𝑁 ) ) )
7 dfrab2 { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } = ( { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } ∩ ( 𝔼 ‘ 𝑁 ) )
8 6 7 eqtr4di ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )