Metamath Proof Explorer


Theorem fvline

Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvline ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )

Proof

Step Hyp Ref Expression
1 eqid [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear
2 fveq2 ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) )
3 2 eleq2d ( 𝑛 = 𝑁 → ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) )
4 2 eleq2d ( 𝑛 = 𝑁 → ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) )
5 3 4 3anbi12d ( 𝑛 = 𝑁 → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) )
6 5 anbi1d ( 𝑛 = 𝑁 → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ↔ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
7 6 rspcev ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) )
8 1 7 mpanr2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) )
9 simpr1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
10 simpr2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
11 colinearex Colinear ∈ V
12 11 cnvex Colinear ∈ V
13 ecexg ( Colinear ∈ V → [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ∈ V )
14 12 13 ax-mp [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ∈ V
15 eleq1 ( 𝑎 = 𝐴 → ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) )
16 neeq1 ( 𝑎 = 𝐴 → ( 𝑎𝑏𝐴𝑏 ) )
17 15 16 3anbi13d ( 𝑎 = 𝐴 → ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑏 ) ) )
18 opeq1 ( 𝑎 = 𝐴 → ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ )
19 18 eceq1d ( 𝑎 = 𝐴 → [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear )
20 19 eqeq2d ( 𝑎 = 𝐴 → ( 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ↔ 𝑙 = [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear ) )
21 17 20 anbi12d ( 𝑎 = 𝐴 → ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) ↔ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑏 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear ) ) )
22 21 rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑏 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear ) ) )
23 eleq1 ( 𝑏 = 𝐵 → ( 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ) )
24 neeq2 ( 𝑏 = 𝐵 → ( 𝐴𝑏𝐴𝐵 ) )
25 23 24 3anbi23d ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑏 ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ) )
26 opeq2 ( 𝑏 = 𝐵 → ⟨ 𝐴 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
27 26 eceq1d ( 𝑏 = 𝐵 → [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear )
28 27 eqeq2d ( 𝑏 = 𝐵 → ( 𝑙 = [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear ↔ 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) )
29 25 28 anbi12d ( 𝑏 = 𝐵 → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑏 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear ) ↔ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
30 29 rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑏 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑏 ⟩ ] Colinear ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
31 eqeq1 ( 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear → ( 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ↔ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) )
32 31 anbi2d ( 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ↔ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
33 32 rexbidv ( 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear → ( ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
34 22 30 33 eloprabg ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ∈ V ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
35 14 34 mp3an3 ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
36 9 10 35 syl2anc ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐵 ) ∧ [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) ) )
37 8 36 mpbird ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } )
38 df-ov ( 𝐴 Line 𝐵 ) = ( Line ‘ ⟨ 𝐴 , 𝐵 ⟩ )
39 df-br ( ⟨ 𝐴 , 𝐵 ⟩ Line [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ↔ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ Line )
40 df-line2 Line = { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) }
41 40 eleq2i ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ Line ↔ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } )
42 39 41 bitri ( ⟨ 𝐴 , 𝐵 ⟩ Line [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ↔ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } )
43 funline Fun Line
44 funbrfv ( Fun Line → ( ⟨ 𝐴 , 𝐵 ⟩ Line [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear → ( Line ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ) )
45 43 44 ax-mp ( ⟨ 𝐴 , 𝐵 ⟩ Line [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear → ( Line ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear )
46 42 45 sylbir ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } → ( Line ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear )
47 38 46 syl5eq ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear ⟩ ∈ { ⟨ ⟨ 𝑎 , 𝑏 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎𝑏 ) ∧ 𝑙 = [ ⟨ 𝑎 , 𝑏 ⟩ ] Colinear ) } → ( 𝐴 Line 𝐵 ) = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear )
48 37 47 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear )
49 opex 𝐴 , 𝐵 ⟩ ∈ V
50 dfec2 ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V → [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = { 𝑥 ∣ ⟨ 𝐴 , 𝐵 Colinear 𝑥 } )
51 49 50 ax-mp [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = { 𝑥 ∣ ⟨ 𝐴 , 𝐵 Colinear 𝑥 }
52 vex 𝑥 ∈ V
53 49 52 brcnv ( ⟨ 𝐴 , 𝐵 Colinear 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ )
54 53 abbii { 𝑥 ∣ ⟨ 𝐴 , 𝐵 Colinear 𝑥 } = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ }
55 51 54 eqtri [ ⟨ 𝐴 , 𝐵 ⟩ ] Colinear = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ }
56 48 55 eqtrdi ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )