Metamath Proof Explorer


Theorem fvline

Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvline NA𝔼NB𝔼NABALineB=x|xColinearAB

Proof

Step Hyp Ref Expression
1 eqid ABColinear-1=ABColinear-1
2 fveq2 n=N𝔼n=𝔼N
3 2 eleq2d n=NA𝔼nA𝔼N
4 2 eleq2d n=NB𝔼nB𝔼N
5 3 4 3anbi12d n=NA𝔼nB𝔼nABA𝔼NB𝔼NAB
6 5 anbi1d n=NA𝔼nB𝔼nABABColinear-1=ABColinear-1A𝔼NB𝔼NABABColinear-1=ABColinear-1
7 6 rspcev NA𝔼NB𝔼NABABColinear-1=ABColinear-1nA𝔼nB𝔼nABABColinear-1=ABColinear-1
8 1 7 mpanr2 NA𝔼NB𝔼NABnA𝔼nB𝔼nABABColinear-1=ABColinear-1
9 simpr1 NA𝔼NB𝔼NABA𝔼N
10 simpr2 NA𝔼NB𝔼NABB𝔼N
11 colinearex ColinearV
12 11 cnvex Colinear-1V
13 ecexg Colinear-1VABColinear-1V
14 12 13 ax-mp ABColinear-1V
15 eleq1 a=Aa𝔼nA𝔼n
16 neeq1 a=AabAb
17 15 16 3anbi13d a=Aa𝔼nb𝔼nabA𝔼nb𝔼nAb
18 opeq1 a=Aab=Ab
19 18 eceq1d a=AabColinear-1=AbColinear-1
20 19 eqeq2d a=Al=abColinear-1l=AbColinear-1
21 17 20 anbi12d a=Aa𝔼nb𝔼nabl=abColinear-1A𝔼nb𝔼nAbl=AbColinear-1
22 21 rexbidv a=Ana𝔼nb𝔼nabl=abColinear-1nA𝔼nb𝔼nAbl=AbColinear-1
23 eleq1 b=Bb𝔼nB𝔼n
24 neeq2 b=BAbAB
25 23 24 3anbi23d b=BA𝔼nb𝔼nAbA𝔼nB𝔼nAB
26 opeq2 b=BAb=AB
27 26 eceq1d b=BAbColinear-1=ABColinear-1
28 27 eqeq2d b=Bl=AbColinear-1l=ABColinear-1
29 25 28 anbi12d b=BA𝔼nb𝔼nAbl=AbColinear-1A𝔼nB𝔼nABl=ABColinear-1
30 29 rexbidv b=BnA𝔼nb𝔼nAbl=AbColinear-1nA𝔼nB𝔼nABl=ABColinear-1
31 eqeq1 l=ABColinear-1l=ABColinear-1ABColinear-1=ABColinear-1
32 31 anbi2d l=ABColinear-1A𝔼nB𝔼nABl=ABColinear-1A𝔼nB𝔼nABABColinear-1=ABColinear-1
33 32 rexbidv l=ABColinear-1nA𝔼nB𝔼nABl=ABColinear-1nA𝔼nB𝔼nABABColinear-1=ABColinear-1
34 22 30 33 eloprabg A𝔼NB𝔼NABColinear-1VABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1nA𝔼nB𝔼nABABColinear-1=ABColinear-1
35 14 34 mp3an3 A𝔼NB𝔼NABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1nA𝔼nB𝔼nABABColinear-1=ABColinear-1
36 9 10 35 syl2anc NA𝔼NB𝔼NABABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1nA𝔼nB𝔼nABABColinear-1=ABColinear-1
37 8 36 mpbird NA𝔼NB𝔼NABABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1
38 df-ov ALineB=LineAB
39 df-br ABLineABColinear-1ABABColinear-1Line
40 df-line2 Line=abl|na𝔼nb𝔼nabl=abColinear-1
41 40 eleq2i ABABColinear-1LineABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1
42 39 41 bitri ABLineABColinear-1ABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1
43 funline FunLine
44 funbrfv FunLineABLineABColinear-1LineAB=ABColinear-1
45 43 44 ax-mp ABLineABColinear-1LineAB=ABColinear-1
46 42 45 sylbir ABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1LineAB=ABColinear-1
47 38 46 eqtrid ABABColinear-1abl|na𝔼nb𝔼nabl=abColinear-1ALineB=ABColinear-1
48 37 47 syl NA𝔼NB𝔼NABALineB=ABColinear-1
49 opex ABV
50 dfec2 ABVABColinear-1=x|ABColinear-1x
51 49 50 ax-mp ABColinear-1=x|ABColinear-1x
52 vex xV
53 49 52 brcnv ABColinear-1xxColinearAB
54 53 abbii x|ABColinear-1x=x|xColinearAB
55 51 54 eqtri ABColinear-1=x|xColinearAB
56 48 55 eqtrdi NA𝔼NB𝔼NABALineB=x|xColinearAB