Metamath Proof Explorer


Theorem funline

Description: Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion funline Fun Line

Proof

Step Hyp Ref Expression
1 reeanv n m a 𝔼 n b 𝔼 n a b l = a b Colinear -1 a 𝔼 m b 𝔼 m a b k = a b Colinear -1 n a 𝔼 n b 𝔼 n a b l = a b Colinear -1 m a 𝔼 m b 𝔼 m a b k = a b Colinear -1
2 eqtr3 l = a b Colinear -1 k = a b Colinear -1 l = k
3 2 ad2ant2l a 𝔼 n b 𝔼 n a b l = a b Colinear -1 a 𝔼 m b 𝔼 m a b k = a b Colinear -1 l = k
4 3 a1i n m a 𝔼 n b 𝔼 n a b l = a b Colinear -1 a 𝔼 m b 𝔼 m a b k = a b Colinear -1 l = k
5 4 rexlimivv n m a 𝔼 n b 𝔼 n a b l = a b Colinear -1 a 𝔼 m b 𝔼 m a b k = a b Colinear -1 l = k
6 1 5 sylbir n a 𝔼 n b 𝔼 n a b l = a b Colinear -1 m a 𝔼 m b 𝔼 m a b k = a b Colinear -1 l = k
7 6 gen2 l k n a 𝔼 n b 𝔼 n a b l = a b Colinear -1 m a 𝔼 m b 𝔼 m a b k = a b Colinear -1 l = k
8 eqeq1 l = k l = a b Colinear -1 k = a b Colinear -1
9 8 anbi2d l = k a 𝔼 n b 𝔼 n a b l = a b Colinear -1 a 𝔼 n b 𝔼 n a b k = a b Colinear -1
10 9 rexbidv l = k n a 𝔼 n b 𝔼 n a b l = a b Colinear -1 n a 𝔼 n b 𝔼 n a b k = a b Colinear -1
11 fveq2 n = m 𝔼 n = 𝔼 m
12 11 eleq2d n = m a 𝔼 n a 𝔼 m
13 11 eleq2d n = m b 𝔼 n b 𝔼 m
14 12 13 3anbi12d n = m a 𝔼 n b 𝔼 n a b a 𝔼 m b 𝔼 m a b
15 14 anbi1d n = m a 𝔼 n b 𝔼 n a b k = a b Colinear -1 a 𝔼 m b 𝔼 m a b k = a b Colinear -1
16 15 cbvrexvw n a 𝔼 n b 𝔼 n a b k = a b Colinear -1 m a 𝔼 m b 𝔼 m a b k = a b Colinear -1
17 10 16 bitrdi l = k n a 𝔼 n b 𝔼 n a b l = a b Colinear -1 m a 𝔼 m b 𝔼 m a b k = a b Colinear -1
18 17 mo4 * l n a 𝔼 n b 𝔼 n a b l = a b Colinear -1 l k n a 𝔼 n b 𝔼 n a b l = a b Colinear -1 m a 𝔼 m b 𝔼 m a b k = a b Colinear -1 l = k
19 7 18 mpbir * l n a 𝔼 n b 𝔼 n a b l = a b Colinear -1
20 19 funoprab Fun a b l | n a 𝔼 n b 𝔼 n a b l = a b Colinear -1
21 df-line2 Line = a b l | n a 𝔼 n b 𝔼 n a b l = a b Colinear -1
22 21 funeqi Fun Line Fun a b l | n a 𝔼 n b 𝔼 n a b l = a b Colinear -1
23 20 22 mpbir Fun Line