Metamath Proof Explorer


Theorem linedegen

Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linedegen A Line A =

Proof

Step Hyp Ref Expression
1 df-ov A Line A = Line A A
2 neirr ¬ A A
3 simp3 A 𝔼 n A 𝔼 n A A A A
4 2 3 mto ¬ A 𝔼 n A 𝔼 n A A
5 4 intnanr ¬ A 𝔼 n A 𝔼 n A A l = A A Colinear -1
6 5 a1i n ¬ A 𝔼 n A 𝔼 n A A l = A A Colinear -1
7 6 nrex ¬ n A 𝔼 n A 𝔼 n A A l = A A Colinear -1
8 7 nex ¬ l n A 𝔼 n A 𝔼 n A A l = A A Colinear -1
9 eleq1 x = A x 𝔼 n A 𝔼 n
10 neeq1 x = A x y A y
11 9 10 3anbi13d x = A x 𝔼 n y 𝔼 n x y A 𝔼 n y 𝔼 n A y
12 opeq1 x = A x y = A y
13 12 eceq1d x = A x y Colinear -1 = A y Colinear -1
14 13 eqeq2d x = A l = x y Colinear -1 l = A y Colinear -1
15 11 14 anbi12d x = A x 𝔼 n y 𝔼 n x y l = x y Colinear -1 A 𝔼 n y 𝔼 n A y l = A y Colinear -1
16 15 rexbidv x = A n x 𝔼 n y 𝔼 n x y l = x y Colinear -1 n A 𝔼 n y 𝔼 n A y l = A y Colinear -1
17 16 exbidv x = A l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1 l n A 𝔼 n y 𝔼 n A y l = A y Colinear -1
18 eleq1 y = A y 𝔼 n A 𝔼 n
19 neeq2 y = A A y A A
20 18 19 3anbi23d y = A A 𝔼 n y 𝔼 n A y A 𝔼 n A 𝔼 n A A
21 opeq2 y = A A y = A A
22 21 eceq1d y = A A y Colinear -1 = A A Colinear -1
23 22 eqeq2d y = A l = A y Colinear -1 l = A A Colinear -1
24 20 23 anbi12d y = A A 𝔼 n y 𝔼 n A y l = A y Colinear -1 A 𝔼 n A 𝔼 n A A l = A A Colinear -1
25 24 rexbidv y = A n A 𝔼 n y 𝔼 n A y l = A y Colinear -1 n A 𝔼 n A 𝔼 n A A l = A A Colinear -1
26 25 exbidv y = A l n A 𝔼 n y 𝔼 n A y l = A y Colinear -1 l n A 𝔼 n A 𝔼 n A A l = A A Colinear -1
27 17 26 opelopabg A V A V A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1 l n A 𝔼 n A 𝔼 n A A l = A A Colinear -1
28 27 anidms A V A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1 l n A 𝔼 n A 𝔼 n A A l = A A Colinear -1
29 8 28 mtbiri A V ¬ A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
30 elopaelxp A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1 A A V × V
31 opelxp1 A A V × V A V
32 30 31 syl A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1 A V
33 32 con3i ¬ A V ¬ A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
34 29 33 pm2.61i ¬ A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
35 df-line2 Line = x y l | n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
36 35 dmeqi dom Line = dom x y l | n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
37 dmoprab dom x y l | n x 𝔼 n y 𝔼 n x y l = x y Colinear -1 = x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
38 36 37 eqtri dom Line = x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
39 38 eleq2i A A dom Line A A x y | l n x 𝔼 n y 𝔼 n x y l = x y Colinear -1
40 34 39 mtbir ¬ A A dom Line
41 ndmfv ¬ A A dom Line Line A A =
42 40 41 ax-mp Line A A =
43 1 42 eqtri A Line A =