Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
|- ( A Line A ) = ( Line ` <. A , A >. ) |
2 |
|
neirr |
|- -. A =/= A |
3 |
|
simp3 |
|- ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) -> A =/= A ) |
4 |
2 3
|
mto |
|- -. ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) |
5 |
4
|
intnanr |
|- -. ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) |
6 |
5
|
a1i |
|- ( n e. NN -> -. ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) ) |
7 |
6
|
nrex |
|- -. E. n e. NN ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) |
8 |
7
|
nex |
|- -. E. l E. n e. NN ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) |
9 |
|
eleq1 |
|- ( x = A -> ( x e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) |
10 |
|
neeq1 |
|- ( x = A -> ( x =/= y <-> A =/= y ) ) |
11 |
9 10
|
3anbi13d |
|- ( x = A -> ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) <-> ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) ) ) |
12 |
|
opeq1 |
|- ( x = A -> <. x , y >. = <. A , y >. ) |
13 |
12
|
eceq1d |
|- ( x = A -> [ <. x , y >. ] `' Colinear = [ <. A , y >. ] `' Colinear ) |
14 |
13
|
eqeq2d |
|- ( x = A -> ( l = [ <. x , y >. ] `' Colinear <-> l = [ <. A , y >. ] `' Colinear ) ) |
15 |
11 14
|
anbi12d |
|- ( x = A -> ( ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) <-> ( ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) /\ l = [ <. A , y >. ] `' Colinear ) ) ) |
16 |
15
|
rexbidv |
|- ( x = A -> ( E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) <-> E. n e. NN ( ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) /\ l = [ <. A , y >. ] `' Colinear ) ) ) |
17 |
16
|
exbidv |
|- ( x = A -> ( E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) <-> E. l E. n e. NN ( ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) /\ l = [ <. A , y >. ] `' Colinear ) ) ) |
18 |
|
eleq1 |
|- ( y = A -> ( y e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) |
19 |
|
neeq2 |
|- ( y = A -> ( A =/= y <-> A =/= A ) ) |
20 |
18 19
|
3anbi23d |
|- ( y = A -> ( ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) <-> ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) ) ) |
21 |
|
opeq2 |
|- ( y = A -> <. A , y >. = <. A , A >. ) |
22 |
21
|
eceq1d |
|- ( y = A -> [ <. A , y >. ] `' Colinear = [ <. A , A >. ] `' Colinear ) |
23 |
22
|
eqeq2d |
|- ( y = A -> ( l = [ <. A , y >. ] `' Colinear <-> l = [ <. A , A >. ] `' Colinear ) ) |
24 |
20 23
|
anbi12d |
|- ( y = A -> ( ( ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) /\ l = [ <. A , y >. ] `' Colinear ) <-> ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) ) ) |
25 |
24
|
rexbidv |
|- ( y = A -> ( E. n e. NN ( ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) /\ l = [ <. A , y >. ] `' Colinear ) <-> E. n e. NN ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) ) ) |
26 |
25
|
exbidv |
|- ( y = A -> ( E. l E. n e. NN ( ( A e. ( EE ` n ) /\ y e. ( EE ` n ) /\ A =/= y ) /\ l = [ <. A , y >. ] `' Colinear ) <-> E. l E. n e. NN ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) ) ) |
27 |
17 26
|
opelopabg |
|- ( ( A e. _V /\ A e. _V ) -> ( <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } <-> E. l E. n e. NN ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) ) ) |
28 |
27
|
anidms |
|- ( A e. _V -> ( <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } <-> E. l E. n e. NN ( ( A e. ( EE ` n ) /\ A e. ( EE ` n ) /\ A =/= A ) /\ l = [ <. A , A >. ] `' Colinear ) ) ) |
29 |
8 28
|
mtbiri |
|- ( A e. _V -> -. <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } ) |
30 |
|
elopaelxp |
|- ( <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } -> <. A , A >. e. ( _V X. _V ) ) |
31 |
|
opelxp1 |
|- ( <. A , A >. e. ( _V X. _V ) -> A e. _V ) |
32 |
30 31
|
syl |
|- ( <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } -> A e. _V ) |
33 |
32
|
con3i |
|- ( -. A e. _V -> -. <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } ) |
34 |
29 33
|
pm2.61i |
|- -. <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } |
35 |
|
df-line2 |
|- Line = { <. <. x , y >. , l >. | E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } |
36 |
35
|
dmeqi |
|- dom Line = dom { <. <. x , y >. , l >. | E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } |
37 |
|
dmoprab |
|- dom { <. <. x , y >. , l >. | E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } = { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } |
38 |
36 37
|
eqtri |
|- dom Line = { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } |
39 |
38
|
eleq2i |
|- ( <. A , A >. e. dom Line <-> <. A , A >. e. { <. x , y >. | E. l E. n e. NN ( ( x e. ( EE ` n ) /\ y e. ( EE ` n ) /\ x =/= y ) /\ l = [ <. x , y >. ] `' Colinear ) } ) |
40 |
34 39
|
mtbir |
|- -. <. A , A >. e. dom Line |
41 |
|
ndmfv |
|- ( -. <. A , A >. e. dom Line -> ( Line ` <. A , A >. ) = (/) ) |
42 |
40 41
|
ax-mp |
|- ( Line ` <. A , A >. ) = (/) |
43 |
1 42
|
eqtri |
|- ( A Line A ) = (/) |