Metamath Proof Explorer


Theorem linedegen

Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linedegen ( 𝐴 Line 𝐴 ) = ∅

Proof

Step Hyp Ref Expression
1 df-ov ( 𝐴 Line 𝐴 ) = ( Line ‘ ⟨ 𝐴 , 𝐴 ⟩ )
2 neirr ¬ 𝐴𝐴
3 simp3 ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) → 𝐴𝐴 )
4 2 3 mto ¬ ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 )
5 4 intnanr ¬ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear )
6 5 a1i ( 𝑛 ∈ ℕ → ¬ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear ) )
7 6 nrex ¬ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear )
8 7 nex ¬ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear )
9 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) )
10 neeq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦𝐴𝑦 ) )
11 9 10 3anbi13d ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ) )
12 opeq1 ( 𝑥 = 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝐴 , 𝑦 ⟩ )
13 12 eceq1d ( 𝑥 = 𝐴 → [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear )
14 13 eqeq2d ( 𝑥 = 𝐴 → ( 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ↔ 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ) )
15 11 14 anbi12d ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) ↔ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ) ) )
16 15 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ) ) )
17 16 exbidv ( 𝑥 = 𝐴 → ( ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) ↔ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ) ) )
18 eleq1 ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) )
19 neeq2 ( 𝑦 = 𝐴 → ( 𝐴𝑦𝐴𝐴 ) )
20 18 19 3anbi23d ( 𝑦 = 𝐴 → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ) )
21 opeq2 ( 𝑦 = 𝐴 → ⟨ 𝐴 , 𝑦 ⟩ = ⟨ 𝐴 , 𝐴 ⟩ )
22 21 eceq1d ( 𝑦 = 𝐴 → [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear )
23 22 eqeq2d ( 𝑦 = 𝐴 → ( 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ↔ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear ) )
24 20 23 anbi12d ( 𝑦 = 𝐴 → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ) ↔ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear ) ) )
25 24 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear ) ) )
26 25 exbidv ( 𝑦 = 𝐴 → ( ∃ 𝑙𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝑦 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝑦 ⟩ ] Colinear ) ↔ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear ) ) )
27 17 26 opelopabg ( ( 𝐴 ∈ V ∧ 𝐴 ∈ V ) → ( ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } ↔ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear ) ) )
28 27 anidms ( 𝐴 ∈ V → ( ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } ↔ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴𝐴 ) ∧ 𝑙 = [ ⟨ 𝐴 , 𝐴 ⟩ ] Colinear ) ) )
29 8 28 mtbiri ( 𝐴 ∈ V → ¬ ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } )
30 elopaelxp ( ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } → ⟨ 𝐴 , 𝐴 ⟩ ∈ ( V × V ) )
31 opelxp1 ( ⟨ 𝐴 , 𝐴 ⟩ ∈ ( V × V ) → 𝐴 ∈ V )
32 30 31 syl ( ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } → 𝐴 ∈ V )
33 32 con3i ( ¬ 𝐴 ∈ V → ¬ ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } )
34 29 33 pm2.61i ¬ ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) }
35 df-line2 Line = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) }
36 35 dmeqi dom Line = dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) }
37 dmoprab dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑙 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) }
38 36 37 eqtri dom Line = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) }
39 38 eleq2i ( ⟨ 𝐴 , 𝐴 ⟩ ∈ dom Line ↔ ⟨ 𝐴 , 𝐴 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑙𝑛 ∈ ℕ ( ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑥𝑦 ) ∧ 𝑙 = [ ⟨ 𝑥 , 𝑦 ⟩ ] Colinear ) } )
40 34 39 mtbir ¬ ⟨ 𝐴 , 𝐴 ⟩ ∈ dom Line
41 ndmfv ( ¬ ⟨ 𝐴 , 𝐴 ⟩ ∈ dom Line → ( Line ‘ ⟨ 𝐴 , 𝐴 ⟩ ) = ∅ )
42 40 41 ax-mp ( Line ‘ ⟨ 𝐴 , 𝐴 ⟩ ) = ∅
43 1 42 eqtri ( 𝐴 Line 𝐴 ) = ∅