Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear |
2 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
3 |
2
|
eleq2d |
|- ( n = N -> ( A e. ( EE ` n ) <-> A e. ( EE ` N ) ) ) |
4 |
2
|
eleq2d |
|- ( n = N -> ( B e. ( EE ` n ) <-> B e. ( EE ` N ) ) ) |
5 |
3 4
|
3anbi12d |
|- ( n = N -> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) <-> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) ) |
6 |
5
|
anbi1d |
|- ( n = N -> ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) <-> ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) ) |
7 |
6
|
rspcev |
|- ( ( N e. NN /\ ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) -> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) |
8 |
1 7
|
mpanr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) |
9 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> A e. ( EE ` N ) ) |
10 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> B e. ( EE ` N ) ) |
11 |
|
colinearex |
|- Colinear e. _V |
12 |
11
|
cnvex |
|- `' Colinear e. _V |
13 |
|
ecexg |
|- ( `' Colinear e. _V -> [ <. A , B >. ] `' Colinear e. _V ) |
14 |
12 13
|
ax-mp |
|- [ <. A , B >. ] `' Colinear e. _V |
15 |
|
eleq1 |
|- ( a = A -> ( a e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) |
16 |
|
neeq1 |
|- ( a = A -> ( a =/= b <-> A =/= b ) ) |
17 |
15 16
|
3anbi13d |
|- ( a = A -> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) <-> ( A e. ( EE ` n ) /\ b e. ( EE ` n ) /\ A =/= b ) ) ) |
18 |
|
opeq1 |
|- ( a = A -> <. a , b >. = <. A , b >. ) |
19 |
18
|
eceq1d |
|- ( a = A -> [ <. a , b >. ] `' Colinear = [ <. A , b >. ] `' Colinear ) |
20 |
19
|
eqeq2d |
|- ( a = A -> ( l = [ <. a , b >. ] `' Colinear <-> l = [ <. A , b >. ] `' Colinear ) ) |
21 |
17 20
|
anbi12d |
|- ( a = A -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> ( ( A e. ( EE ` n ) /\ b e. ( EE ` n ) /\ A =/= b ) /\ l = [ <. A , b >. ] `' Colinear ) ) ) |
22 |
21
|
rexbidv |
|- ( a = A -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> E. n e. NN ( ( A e. ( EE ` n ) /\ b e. ( EE ` n ) /\ A =/= b ) /\ l = [ <. A , b >. ] `' Colinear ) ) ) |
23 |
|
eleq1 |
|- ( b = B -> ( b e. ( EE ` n ) <-> B e. ( EE ` n ) ) ) |
24 |
|
neeq2 |
|- ( b = B -> ( A =/= b <-> A =/= B ) ) |
25 |
23 24
|
3anbi23d |
|- ( b = B -> ( ( A e. ( EE ` n ) /\ b e. ( EE ` n ) /\ A =/= b ) <-> ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) ) ) |
26 |
|
opeq2 |
|- ( b = B -> <. A , b >. = <. A , B >. ) |
27 |
26
|
eceq1d |
|- ( b = B -> [ <. A , b >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) |
28 |
27
|
eqeq2d |
|- ( b = B -> ( l = [ <. A , b >. ] `' Colinear <-> l = [ <. A , B >. ] `' Colinear ) ) |
29 |
25 28
|
anbi12d |
|- ( b = B -> ( ( ( A e. ( EE ` n ) /\ b e. ( EE ` n ) /\ A =/= b ) /\ l = [ <. A , b >. ] `' Colinear ) <-> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ l = [ <. A , B >. ] `' Colinear ) ) ) |
30 |
29
|
rexbidv |
|- ( b = B -> ( E. n e. NN ( ( A e. ( EE ` n ) /\ b e. ( EE ` n ) /\ A =/= b ) /\ l = [ <. A , b >. ] `' Colinear ) <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ l = [ <. A , B >. ] `' Colinear ) ) ) |
31 |
|
eqeq1 |
|- ( l = [ <. A , B >. ] `' Colinear -> ( l = [ <. A , B >. ] `' Colinear <-> [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) |
32 |
31
|
anbi2d |
|- ( l = [ <. A , B >. ] `' Colinear -> ( ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ l = [ <. A , B >. ] `' Colinear ) <-> ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) ) |
33 |
32
|
rexbidv |
|- ( l = [ <. A , B >. ] `' Colinear -> ( E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ l = [ <. A , B >. ] `' Colinear ) <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) ) |
34 |
22 30 33
|
eloprabg |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ [ <. A , B >. ] `' Colinear e. _V ) -> ( <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) ) |
35 |
14 34
|
mp3an3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) ) |
36 |
9 10 35
|
syl2anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } <-> E. n e. NN ( ( A e. ( EE ` n ) /\ B e. ( EE ` n ) /\ A =/= B ) /\ [ <. A , B >. ] `' Colinear = [ <. A , B >. ] `' Colinear ) ) ) |
37 |
8 36
|
mpbird |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } ) |
38 |
|
df-ov |
|- ( A Line B ) = ( Line ` <. A , B >. ) |
39 |
|
df-br |
|- ( <. A , B >. Line [ <. A , B >. ] `' Colinear <-> <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. Line ) |
40 |
|
df-line2 |
|- Line = { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } |
41 |
40
|
eleq2i |
|- ( <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. Line <-> <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } ) |
42 |
39 41
|
bitri |
|- ( <. A , B >. Line [ <. A , B >. ] `' Colinear <-> <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } ) |
43 |
|
funline |
|- Fun Line |
44 |
|
funbrfv |
|- ( Fun Line -> ( <. A , B >. Line [ <. A , B >. ] `' Colinear -> ( Line ` <. A , B >. ) = [ <. A , B >. ] `' Colinear ) ) |
45 |
43 44
|
ax-mp |
|- ( <. A , B >. Line [ <. A , B >. ] `' Colinear -> ( Line ` <. A , B >. ) = [ <. A , B >. ] `' Colinear ) |
46 |
42 45
|
sylbir |
|- ( <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } -> ( Line ` <. A , B >. ) = [ <. A , B >. ] `' Colinear ) |
47 |
38 46
|
eqtrid |
|- ( <. <. A , B >. , [ <. A , B >. ] `' Colinear >. e. { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } -> ( A Line B ) = [ <. A , B >. ] `' Colinear ) |
48 |
37 47
|
syl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = [ <. A , B >. ] `' Colinear ) |
49 |
|
opex |
|- <. A , B >. e. _V |
50 |
|
dfec2 |
|- ( <. A , B >. e. _V -> [ <. A , B >. ] `' Colinear = { x | <. A , B >. `' Colinear x } ) |
51 |
49 50
|
ax-mp |
|- [ <. A , B >. ] `' Colinear = { x | <. A , B >. `' Colinear x } |
52 |
|
vex |
|- x e. _V |
53 |
49 52
|
brcnv |
|- ( <. A , B >. `' Colinear x <-> x Colinear <. A , B >. ) |
54 |
53
|
abbii |
|- { x | <. A , B >. `' Colinear x } = { x | x Colinear <. A , B >. } |
55 |
51 54
|
eqtri |
|- [ <. A , B >. ] `' Colinear = { x | x Colinear <. A , B >. } |
56 |
48 55
|
eqtrdi |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x | x Colinear <. A , B >. } ) |