Step |
Hyp |
Ref |
Expression |
1 |
|
reeanv |
|- ( E. n e. NN E. m e. NN ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) <-> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) |
2 |
|
eqtr3 |
|- ( ( l = [ <. a , b >. ] `' Colinear /\ k = [ <. a , b >. ] `' Colinear ) -> l = k ) |
3 |
2
|
ad2ant2l |
|- ( ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) |
4 |
3
|
a1i |
|- ( ( n e. NN /\ m e. NN ) -> ( ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) ) |
5 |
4
|
rexlimivv |
|- ( E. n e. NN E. m e. NN ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) |
6 |
1 5
|
sylbir |
|- ( ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) |
7 |
6
|
gen2 |
|- A. l A. k ( ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) |
8 |
|
eqeq1 |
|- ( l = k -> ( l = [ <. a , b >. ] `' Colinear <-> k = [ <. a , b >. ] `' Colinear ) ) |
9 |
8
|
anbi2d |
|- ( l = k -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) |
10 |
9
|
rexbidv |
|- ( l = k -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) |
11 |
|
fveq2 |
|- ( n = m -> ( EE ` n ) = ( EE ` m ) ) |
12 |
11
|
eleq2d |
|- ( n = m -> ( a e. ( EE ` n ) <-> a e. ( EE ` m ) ) ) |
13 |
11
|
eleq2d |
|- ( n = m -> ( b e. ( EE ` n ) <-> b e. ( EE ` m ) ) ) |
14 |
12 13
|
3anbi12d |
|- ( n = m -> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) <-> ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) ) ) |
15 |
14
|
anbi1d |
|- ( n = m -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) <-> ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) |
16 |
15
|
cbvrexvw |
|- ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) <-> E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) |
17 |
10 16
|
bitrdi |
|- ( l = k -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) |
18 |
17
|
mo4 |
|- ( E* l E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> A. l A. k ( ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) ) |
19 |
7 18
|
mpbir |
|- E* l E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) |
20 |
19
|
funoprab |
|- Fun { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } |
21 |
|
df-line2 |
|- Line = { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } |
22 |
21
|
funeqi |
|- ( Fun Line <-> Fun { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } ) |
23 |
20 22
|
mpbir |
|- Fun Line |