| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reeanv |  |-  ( E. n e. NN E. m e. NN ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) <-> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) | 
						
							| 2 |  | eqtr3 |  |-  ( ( l = [ <. a , b >. ] `' Colinear /\ k = [ <. a , b >. ] `' Colinear ) -> l = k ) | 
						
							| 3 | 2 | ad2ant2l |  |-  ( ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) | 
						
							| 4 | 3 | a1i |  |-  ( ( n e. NN /\ m e. NN ) -> ( ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) ) | 
						
							| 5 | 4 | rexlimivv |  |-  ( E. n e. NN E. m e. NN ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) | 
						
							| 6 | 1 5 | sylbir |  |-  ( ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) | 
						
							| 7 | 6 | gen2 |  |-  A. l A. k ( ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) | 
						
							| 8 |  | eqeq1 |  |-  ( l = k -> ( l = [ <. a , b >. ] `' Colinear <-> k = [ <. a , b >. ] `' Colinear ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( l = k -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( l = k -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( n = m -> ( EE ` n ) = ( EE ` m ) ) | 
						
							| 12 | 11 | eleq2d |  |-  ( n = m -> ( a e. ( EE ` n ) <-> a e. ( EE ` m ) ) ) | 
						
							| 13 | 11 | eleq2d |  |-  ( n = m -> ( b e. ( EE ` n ) <-> b e. ( EE ` m ) ) ) | 
						
							| 14 | 12 13 | 3anbi12d |  |-  ( n = m -> ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) <-> ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) ) ) | 
						
							| 15 | 14 | anbi1d |  |-  ( n = m -> ( ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) <-> ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) | 
						
							| 16 | 15 | cbvrexvw |  |-  ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) <-> E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) | 
						
							| 17 | 10 16 | bitrdi |  |-  ( l = k -> ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) ) | 
						
							| 18 | 17 | mo4 |  |-  ( E* l E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) <-> A. l A. k ( ( E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) /\ E. m e. NN ( ( a e. ( EE ` m ) /\ b e. ( EE ` m ) /\ a =/= b ) /\ k = [ <. a , b >. ] `' Colinear ) ) -> l = k ) ) | 
						
							| 19 | 7 18 | mpbir |  |-  E* l E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) | 
						
							| 20 | 19 | funoprab |  |-  Fun { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } | 
						
							| 21 |  | df-line2 |  |-  Line = { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } | 
						
							| 22 | 21 | funeqi |  |-  ( Fun Line <-> Fun { <. <. a , b >. , l >. | E. n e. NN ( ( a e. ( EE ` n ) /\ b e. ( EE ` n ) /\ a =/= b ) /\ l = [ <. a , b >. ] `' Colinear ) } ) | 
						
							| 23 | 20 22 | mpbir |  |-  Fun Line |