| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reeanv | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑚  ∈  ℕ ( ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) )  ↔  ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) ) ) | 
						
							| 2 |  | eqtr3 | ⊢ ( ( 𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear   ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  →  𝑙  =  𝑘 ) | 
						
							| 3 | 2 | ad2ant2l | ⊢ ( ( ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) )  →  𝑙  =  𝑘 ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) )  →  𝑙  =  𝑘 ) ) | 
						
							| 5 | 4 | rexlimivv | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑚  ∈  ℕ ( ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) )  →  𝑙  =  𝑘 ) | 
						
							| 6 | 1 5 | sylbir | ⊢ ( ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) )  →  𝑙  =  𝑘 ) | 
						
							| 7 | 6 | gen2 | ⊢ ∀ 𝑙 ∀ 𝑘 ( ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) )  →  𝑙  =  𝑘 ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑙  =  𝑘  →  ( 𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear   ↔  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( 𝑙  =  𝑘  →  ( ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ↔  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝑙  =  𝑘  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝔼 ‘ 𝑛 )  =  ( 𝔼 ‘ 𝑚 ) ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝑎  ∈  ( 𝔼 ‘ 𝑚 ) ) ) | 
						
							| 13 | 11 | eleq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝑏  ∈  ( 𝔼 ‘ 𝑚 ) ) ) | 
						
							| 14 | 12 13 | 3anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ↔  ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 ) ) ) | 
						
							| 15 | 14 | anbi1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ↔  ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) ) ) | 
						
							| 16 | 15 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ↔  ∃ 𝑚  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) ) | 
						
							| 17 | 10 16 | bitrdi | ⊢ ( 𝑙  =  𝑘  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ↔  ∃ 𝑚  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) ) ) | 
						
							| 18 | 17 | mo4 | ⊢ ( ∃* 𝑙 ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ↔  ∀ 𝑙 ∀ 𝑘 ( ( ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑘  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) )  →  𝑙  =  𝑘 ) ) | 
						
							| 19 | 7 18 | mpbir | ⊢ ∃* 𝑙 ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) | 
						
							| 20 | 19 | funoprab | ⊢ Fun  { 〈 〈 𝑎 ,  𝑏 〉 ,  𝑙 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) } | 
						
							| 21 |  | df-line2 | ⊢ Line  =  { 〈 〈 𝑎 ,  𝑏 〉 ,  𝑙 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) } | 
						
							| 22 | 21 | funeqi | ⊢ ( Fun  Line  ↔  Fun  { 〈 〈 𝑎 ,  𝑏 〉 ,  𝑙 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ≠  𝑏 )  ∧  𝑙  =  [ 〈 𝑎 ,  𝑏 〉 ] ◡  Colinear  ) } ) | 
						
							| 23 | 20 22 | mpbir | ⊢ Fun  Line |