Step |
Hyp |
Ref |
Expression |
1 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) ↔ ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) ) |
2 |
|
eqtr3 |
⊢ ( ( 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) → 𝑙 = 𝑘 ) |
3 |
2
|
ad2ant2l |
⊢ ( ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) → 𝑙 = 𝑘 ) |
4 |
3
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) → 𝑙 = 𝑘 ) ) |
5 |
4
|
rexlimivv |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) → 𝑙 = 𝑘 ) |
6 |
1 5
|
sylbir |
⊢ ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) → 𝑙 = 𝑘 ) |
7 |
6
|
gen2 |
⊢ ∀ 𝑙 ∀ 𝑘 ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) → 𝑙 = 𝑘 ) |
8 |
|
eqeq1 |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ↔ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ↔ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑙 = 𝑘 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑚 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ) ) |
13 |
11
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ) ) |
14 |
12 13
|
3anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ↔ ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ) ) |
15 |
14
|
anbi1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ↔ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) ) |
16 |
15
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ↔ ∃ 𝑚 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) |
17 |
10 16
|
bitrdi |
⊢ ( 𝑙 = 𝑘 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ↔ ∃ 𝑚 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) ) |
18 |
17
|
mo4 |
⊢ ( ∃* 𝑙 ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ↔ ∀ 𝑙 ∀ 𝑘 ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑘 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) ) → 𝑙 = 𝑘 ) ) |
19 |
7 18
|
mpbir |
⊢ ∃* 𝑙 ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) |
20 |
19
|
funoprab |
⊢ Fun { 〈 〈 𝑎 , 𝑏 〉 , 𝑙 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) } |
21 |
|
df-line2 |
⊢ Line = { 〈 〈 𝑎 , 𝑏 〉 , 𝑙 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) } |
22 |
21
|
funeqi |
⊢ ( Fun Line ↔ Fun { 〈 〈 𝑎 , 𝑏 〉 , 𝑙 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ≠ 𝑏 ) ∧ 𝑙 = [ 〈 𝑎 , 𝑏 〉 ] ◡ Colinear ) } ) |
23 |
20 22
|
mpbir |
⊢ Fun Line |