| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvline |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x | x Colinear <. A , B >. } ) |
| 2 |
|
vex |
|- x e. _V |
| 3 |
2
|
a1i |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> x e. _V ) |
| 4 |
|
simp1 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> A e. ( EE ` N ) ) |
| 5 |
|
simp2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> B e. ( EE ` N ) ) |
| 6 |
3 4 5
|
3jca |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( x e. _V /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
| 7 |
|
colineardim1 |
|- ( ( N e. NN /\ ( x e. _V /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( x Colinear <. A , B >. -> x e. ( EE ` N ) ) ) |
| 8 |
6 7
|
sylan2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( x Colinear <. A , B >. -> x e. ( EE ` N ) ) ) |
| 9 |
8
|
abssdv |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> { x | x Colinear <. A , B >. } C_ ( EE ` N ) ) |
| 10 |
1 9
|
eqsstrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) C_ ( EE ` N ) ) |