Step |
Hyp |
Ref |
Expression |
1 |
|
fvline |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x | x Colinear <. A , B >. } ) |
2 |
|
vex |
|- x e. _V |
3 |
2
|
a1i |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> x e. _V ) |
4 |
|
simp1 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> A e. ( EE ` N ) ) |
5 |
|
simp2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> B e. ( EE ` N ) ) |
6 |
3 4 5
|
3jca |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( x e. _V /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
7 |
|
colineardim1 |
|- ( ( N e. NN /\ ( x e. _V /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( x Colinear <. A , B >. -> x e. ( EE ` N ) ) ) |
8 |
6 7
|
sylan2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( x Colinear <. A , B >. -> x e. ( EE ` N ) ) ) |
9 |
8
|
abssdv |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> { x | x Colinear <. A , B >. } C_ ( EE ` N ) ) |
10 |
1 9
|
eqsstrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) C_ ( EE ` N ) ) |