| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvline |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x | x Colinear <. A , B >. } ) | 
						
							| 2 |  | vex |  |-  x e. _V | 
						
							| 3 | 2 | a1i |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> x e. _V ) | 
						
							| 4 |  | simp1 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> B e. ( EE ` N ) ) | 
						
							| 6 | 3 4 5 | 3jca |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) -> ( x e. _V /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 7 |  | colineardim1 |  |-  ( ( N e. NN /\ ( x e. _V /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( x Colinear <. A , B >. -> x e. ( EE ` N ) ) ) | 
						
							| 8 | 6 7 | sylan2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( x Colinear <. A , B >. -> x e. ( EE ` N ) ) ) | 
						
							| 9 | 8 | abssdv |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> { x | x Colinear <. A , B >. } C_ ( EE ` N ) ) | 
						
							| 10 | 1 9 | eqsstrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) C_ ( EE ` N ) ) |