Metamath Proof Explorer


Theorem liness

Description: A line is a subset of the space its two points lie in. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion liness ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) ⊆ ( 𝔼 ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 fvline ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) = { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } )
2 vex 𝑥 ∈ V
3 2 a1i ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) → 𝑥 ∈ V )
4 simp1 ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
5 simp2 ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
6 3 4 5 3jca ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) → ( 𝑥 ∈ V ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) )
7 colineardim1 ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ V ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ → 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) )
8 6 7 sylan2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ → 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) )
9 8 abssdv ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → { 𝑥𝑥 Colinear ⟨ 𝐴 , 𝐵 ⟩ } ⊆ ( 𝔼 ‘ 𝑁 ) )
10 1 9 eqsstrd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴𝐵 ) ) → ( 𝐴 Line 𝐵 ) ⊆ ( 𝔼 ‘ 𝑁 ) )