Metamath Proof Explorer


Theorem liness

Description: A line is a subset of the space its two points lie in. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion liness N A 𝔼 N B 𝔼 N A B A Line B 𝔼 N

Proof

Step Hyp Ref Expression
1 fvline N A 𝔼 N B 𝔼 N A B A Line B = x | x Colinear A B
2 vex x V
3 2 a1i A 𝔼 N B 𝔼 N A B x V
4 simp1 A 𝔼 N B 𝔼 N A B A 𝔼 N
5 simp2 A 𝔼 N B 𝔼 N A B B 𝔼 N
6 3 4 5 3jca A 𝔼 N B 𝔼 N A B x V A 𝔼 N B 𝔼 N
7 colineardim1 N x V A 𝔼 N B 𝔼 N x Colinear A B x 𝔼 N
8 6 7 sylan2 N A 𝔼 N B 𝔼 N A B x Colinear A B x 𝔼 N
9 8 abssdv N A 𝔼 N B 𝔼 N A B x | x Colinear A B 𝔼 N
10 1 9 eqsstrd N A 𝔼 N B 𝔼 N A B A Line B 𝔼 N