| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvline |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x | x Colinear <. A , B >. } ) | 
						
							| 2 |  | liness |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) C_ ( EE ` N ) ) | 
						
							| 3 | 1 2 | eqsstrrd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> { x | x Colinear <. A , B >. } C_ ( EE ` N ) ) | 
						
							| 4 |  | dfss2 |  |-  ( { x | x Colinear <. A , B >. } C_ ( EE ` N ) <-> ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) = { x | x Colinear <. A , B >. } ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) = { x | x Colinear <. A , B >. } ) | 
						
							| 6 | 1 5 | eqtr4d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) ) | 
						
							| 7 |  | dfrab2 |  |-  { x e. ( EE ` N ) | x Colinear <. A , B >. } = ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) | 
						
							| 8 | 6 7 | eqtr4di |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x e. ( EE ` N ) | x Colinear <. A , B >. } ) |