Metamath Proof Explorer


Theorem fvline2

Description: Alternate definition of a line. (Contributed by Scott Fenton, 25-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fvline2
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x e. ( EE ` N ) | x Colinear <. A , B >. } )

Proof

Step Hyp Ref Expression
1 fvline
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x | x Colinear <. A , B >. } )
2 liness
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) C_ ( EE ` N ) )
3 1 2 eqsstrrd
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> { x | x Colinear <. A , B >. } C_ ( EE ` N ) )
4 df-ss
 |-  ( { x | x Colinear <. A , B >. } C_ ( EE ` N ) <-> ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) = { x | x Colinear <. A , B >. } )
5 3 4 sylib
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) = { x | x Colinear <. A , B >. } )
6 1 5 eqtr4d
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) )
7 dfrab2
 |-  { x e. ( EE ` N ) | x Colinear <. A , B >. } = ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) )
8 6 7 eqtr4di
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x e. ( EE ` N ) | x Colinear <. A , B >. } )