| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvline |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x | x Colinear <. A , B >. } ) |
| 2 |
|
liness |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) C_ ( EE ` N ) ) |
| 3 |
1 2
|
eqsstrrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> { x | x Colinear <. A , B >. } C_ ( EE ` N ) ) |
| 4 |
|
dfss2 |
|- ( { x | x Colinear <. A , B >. } C_ ( EE ` N ) <-> ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) = { x | x Colinear <. A , B >. } ) |
| 5 |
3 4
|
sylib |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) = { x | x Colinear <. A , B >. } ) |
| 6 |
1 5
|
eqtr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) ) |
| 7 |
|
dfrab2 |
|- { x e. ( EE ` N ) | x Colinear <. A , B >. } = ( { x | x Colinear <. A , B >. } i^i ( EE ` N ) ) |
| 8 |
6 7
|
eqtr4di |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A =/= B ) ) -> ( A Line B ) = { x e. ( EE ` N ) | x Colinear <. A , B >. } ) |