| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 2 |  | simpr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 3 |  | simpl21 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P e. ( EE ` N ) ) | 
						
							| 4 |  | simpl22 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> Q e. ( EE ` N ) ) | 
						
							| 5 |  | brcolinear |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) | 
						
							| 8 |  | olc |  |-  ( x Btwn <. P , Q >. -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) | 
						
							| 9 | 8 | orcd |  |-  ( x Btwn <. P , Q >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Btwn <. P , Q >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 11 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P =/= Q ) | 
						
							| 12 | 11 | necomd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> Q =/= P ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> Q =/= P ) | 
						
							| 14 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , R >. ) | 
						
							| 15 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 16 | 13 14 15 | 3jca |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) | 
						
							| 17 |  | simpl23 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> R e. ( EE ` N ) ) | 
						
							| 18 |  | btwnconn2 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 19 | 1 4 3 17 2 18 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 21 | 16 20 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) | 
						
							| 22 | 21 | olcd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 23 | 22 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( P Btwn <. Q , x >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 24 |  | btwncom |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( Q Btwn <. x , P >. <-> Q Btwn <. P , x >. ) ) | 
						
							| 25 | 1 4 2 3 24 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( Q Btwn <. x , P >. <-> Q Btwn <. P , x >. ) ) | 
						
							| 26 |  | orc |  |-  ( Q Btwn <. P , x >. -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) | 
						
							| 27 | 26 | orcd |  |-  ( Q Btwn <. P , x >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 28 | 25 27 | biimtrdi |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( Q Btwn <. x , P >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( Q Btwn <. x , P >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 30 | 10 23 29 | 3jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 31 | 7 30 | sylbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 32 |  | olc |  |-  ( ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 33 | 31 32 | syl6 |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. -> ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) | 
						
							| 34 |  | colineartriv1 |  |-  ( ( N e. NN /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) -> P Colinear <. P , Q >. ) | 
						
							| 35 | 1 3 4 34 | syl3anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P Colinear <. P , Q >. ) | 
						
							| 36 |  | breq1 |  |-  ( x = P -> ( x Colinear <. P , Q >. <-> P Colinear <. P , Q >. ) ) | 
						
							| 37 | 35 36 | syl5ibrcom |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( x = P -> x Colinear <. P , Q >. ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x = P -> x Colinear <. P , Q >. ) ) | 
						
							| 39 |  | btwncolinear3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ x e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( Q Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 40 | 1 3 2 4 39 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( Q Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 41 |  | btwncolinear5 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 42 | 1 3 4 2 41 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 43 | 40 42 | jaod |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 45 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P =/= R ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> P =/= R ) | 
						
							| 47 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> P Btwn <. Q , R >. ) | 
						
							| 48 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> R Btwn <. P , x >. ) | 
						
							| 49 | 46 47 48 | 3jca |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) | 
						
							| 50 |  | btwnouttr |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 51 | 1 4 3 17 2 50 | syl122anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> ( ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) | 
						
							| 53 | 49 52 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> P Btwn <. Q , x >. ) | 
						
							| 54 |  | btwncolinear4 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 55 | 1 4 2 3 54 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 57 | 53 56 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 58 | 57 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( R Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) | 
						
							| 59 |  | simprr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> x Btwn <. P , R >. ) | 
						
							| 60 | 1 2 3 17 59 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> x Btwn <. R , P >. ) | 
						
							| 61 |  | simprl |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> P Btwn <. Q , R >. ) | 
						
							| 62 | 1 3 4 17 61 | btwncomand |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> P Btwn <. R , Q >. ) | 
						
							| 63 | 1 17 2 3 4 60 62 | btwnexch3and |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> P Btwn <. x , Q >. ) | 
						
							| 64 |  | btwncolinear2 |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 65 | 1 2 4 3 64 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) | 
						
							| 67 | 63 66 | mpd |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> x Colinear <. P , Q >. ) | 
						
							| 68 | 67 | expr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Btwn <. P , R >. -> x Colinear <. P , Q >. ) ) | 
						
							| 69 | 58 68 | jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) -> x Colinear <. P , Q >. ) ) | 
						
							| 70 | 44 69 | jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> x Colinear <. P , Q >. ) ) | 
						
							| 71 | 38 70 | jaod |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) -> x Colinear <. P , Q >. ) ) | 
						
							| 72 | 33 71 | impbid |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) | 
						
							| 73 |  | pm5.63 |  |-  ( ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( x = P \/ ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) | 
						
							| 74 |  | df-ne |  |-  ( x =/= P <-> -. x = P ) | 
						
							| 75 | 74 | anbi1i |  |-  ( ( x =/= P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 76 |  | andi |  |-  ( ( x =/= P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 77 | 75 76 | bitr3i |  |-  ( ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 78 | 77 | orbi2i |  |-  ( ( x = P \/ ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) | 
						
							| 79 | 73 78 | bitri |  |-  ( ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) | 
						
							| 80 | 72 79 | bitrdi |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) ) | 
						
							| 81 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( P OutsideOf <. Q , x >. <-> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) | 
						
							| 82 | 1 3 4 2 81 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. Q , x >. <-> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) | 
						
							| 83 |  | 3simpc |  |-  ( ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) -> ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 84 |  | simpl3l |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> P =/= Q ) | 
						
							| 85 | 84 | necomd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> Q =/= P ) | 
						
							| 86 |  | simprrl |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> x =/= P ) | 
						
							| 87 |  | simprrr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) | 
						
							| 88 | 85 86 87 | 3jca |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) | 
						
							| 89 | 88 | expr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) -> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) | 
						
							| 90 | 83 89 | impbid2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) <-> ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) | 
						
							| 91 | 82 90 | bitrd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. Q , x >. <-> ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) | 
						
							| 92 |  | broutsideof2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( P OutsideOf <. R , x >. <-> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 93 | 1 3 17 2 92 | syl13anc |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. R , x >. <-> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 94 |  | 3simpc |  |-  ( ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 95 |  | simpl3r |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> P =/= R ) | 
						
							| 96 | 95 | necomd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> R =/= P ) | 
						
							| 97 |  | simprrl |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> x =/= P ) | 
						
							| 98 |  | simprrr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) | 
						
							| 99 | 96 97 98 | 3jca |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) | 
						
							| 100 | 99 | expr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 101 | 94 100 | impbid2 |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) <-> ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 102 | 93 101 | bitrd |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. R , x >. <-> ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) | 
						
							| 103 | 91 102 | orbi12d |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) | 
						
							| 105 | 104 | orbi2d |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) ) | 
						
							| 106 | 80 105 | bitr4d |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) ) ) | 
						
							| 107 |  | orcom |  |-  ( ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) <-> ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) \/ x = P ) ) | 
						
							| 108 |  | or32 |  |-  ( ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) \/ x = P ) <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) | 
						
							| 109 | 107 108 | bitri |  |-  ( ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) | 
						
							| 110 | 106 109 | bitrdi |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) ) | 
						
							| 111 | 110 | an32s |  |-  ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) ) | 
						
							| 112 | 111 | rabbidva |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> { x e. ( EE ` N ) | x Colinear <. P , Q >. } = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } ) | 
						
							| 113 |  | simp1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> N e. NN ) | 
						
							| 114 |  | simp21 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> P e. ( EE ` N ) ) | 
						
							| 115 |  | simp22 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> Q e. ( EE ` N ) ) | 
						
							| 116 |  | simp3l |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> P =/= Q ) | 
						
							| 117 |  | fvline2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 118 | 113 114 115 116 117 | syl13anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 120 |  | fvray |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Ray Q ) = { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } ) | 
						
							| 121 | 113 114 115 116 120 | syl13anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Ray Q ) = { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } ) | 
						
							| 122 |  | rabsn |  |-  ( P e. ( EE ` N ) -> { x e. ( EE ` N ) | x = P } = { P } ) | 
						
							| 123 | 114 122 | syl |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> { x e. ( EE ` N ) | x = P } = { P } ) | 
						
							| 124 | 123 | eqcomd |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> { P } = { x e. ( EE ` N ) | x = P } ) | 
						
							| 125 | 121 124 | uneq12d |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( ( P Ray Q ) u. { P } ) = ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) ) | 
						
							| 126 |  | simp23 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> R e. ( EE ` N ) ) | 
						
							| 127 |  | simp3r |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> P =/= R ) | 
						
							| 128 |  | fvray |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) /\ P =/= R ) ) -> ( P Ray R ) = { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) | 
						
							| 129 | 113 114 126 127 128 | syl13anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Ray R ) = { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) | 
						
							| 130 | 125 129 | uneq12d |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) = ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) = ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) ) | 
						
							| 132 |  | unrab |  |-  ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) = { x e. ( EE ` N ) | ( P OutsideOf <. Q , x >. \/ x = P ) } | 
						
							| 133 | 132 | uneq1i |  |-  ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) = ( { x e. ( EE ` N ) | ( P OutsideOf <. Q , x >. \/ x = P ) } u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) | 
						
							| 134 |  | unrab |  |-  ( { x e. ( EE ` N ) | ( P OutsideOf <. Q , x >. \/ x = P ) } u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } | 
						
							| 135 | 133 134 | eqtri |  |-  ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } | 
						
							| 136 | 131 135 | eqtrdi |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } ) | 
						
							| 137 | 112 119 136 | 3eqtr4d |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( P Line Q ) = ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) ) | 
						
							| 138 | 137 | ex |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Btwn <. Q , R >. -> ( P Line Q ) = ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) ) ) |