| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
| 2 |
|
simpr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
| 3 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P e. ( EE ` N ) ) |
| 4 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> Q e. ( EE ` N ) ) |
| 5 |
|
brcolinear |
|- ( ( N e. NN /\ ( x e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) |
| 6 |
1 2 3 4 5
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) |
| 7 |
6
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) ) ) |
| 8 |
|
olc |
|- ( x Btwn <. P , Q >. -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) |
| 9 |
8
|
orcd |
|- ( x Btwn <. P , Q >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 10 |
9
|
a1i |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Btwn <. P , Q >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 11 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P =/= Q ) |
| 12 |
11
|
necomd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> Q =/= P ) |
| 13 |
12
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> Q =/= P ) |
| 14 |
|
simprl |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , R >. ) |
| 15 |
|
simprr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> P Btwn <. Q , x >. ) |
| 16 |
13 14 15
|
3jca |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) |
| 17 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> R e. ( EE ` N ) ) |
| 18 |
|
btwnconn2 |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 19 |
1 4 3 17 2 18
|
syl122anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 20 |
19
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( ( Q =/= P /\ P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 21 |
16 20
|
mpd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) |
| 22 |
21
|
olcd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ P Btwn <. Q , x >. ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 23 |
22
|
expr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( P Btwn <. Q , x >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 24 |
|
btwncom |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( Q Btwn <. x , P >. <-> Q Btwn <. P , x >. ) ) |
| 25 |
1 4 2 3 24
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( Q Btwn <. x , P >. <-> Q Btwn <. P , x >. ) ) |
| 26 |
|
orc |
|- ( Q Btwn <. P , x >. -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) |
| 27 |
26
|
orcd |
|- ( Q Btwn <. P , x >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 28 |
25 27
|
biimtrdi |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( Q Btwn <. x , P >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( Q Btwn <. x , P >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 30 |
10 23 29
|
3jaod |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( x Btwn <. P , Q >. \/ P Btwn <. Q , x >. \/ Q Btwn <. x , P >. ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 31 |
7 30
|
sylbid |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 32 |
|
olc |
|- ( ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 33 |
31 32
|
syl6 |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. -> ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) |
| 34 |
|
colineartriv1 |
|- ( ( N e. NN /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) -> P Colinear <. P , Q >. ) |
| 35 |
1 3 4 34
|
syl3anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P Colinear <. P , Q >. ) |
| 36 |
|
breq1 |
|- ( x = P -> ( x Colinear <. P , Q >. <-> P Colinear <. P , Q >. ) ) |
| 37 |
35 36
|
syl5ibrcom |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( x = P -> x Colinear <. P , Q >. ) ) |
| 38 |
37
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x = P -> x Colinear <. P , Q >. ) ) |
| 39 |
|
btwncolinear3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ x e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( Q Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) |
| 40 |
1 3 2 4 39
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( Q Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) |
| 41 |
|
btwncolinear5 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , Q >. ) ) |
| 42 |
1 3 4 2 41
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. P , Q >. -> x Colinear <. P , Q >. ) ) |
| 43 |
40 42
|
jaod |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) |
| 44 |
43
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) -> x Colinear <. P , Q >. ) ) |
| 45 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> P =/= R ) |
| 46 |
45
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> P =/= R ) |
| 47 |
|
simprl |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> P Btwn <. Q , R >. ) |
| 48 |
|
simprr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> R Btwn <. P , x >. ) |
| 49 |
46 47 48
|
3jca |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) |
| 50 |
|
btwnouttr |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) /\ ( R e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) |
| 51 |
1 4 3 17 2 50
|
syl122anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) |
| 52 |
51
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> ( ( P =/= R /\ P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) -> P Btwn <. Q , x >. ) ) |
| 53 |
49 52
|
mpd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> P Btwn <. Q , x >. ) |
| 54 |
|
btwncolinear4 |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ x e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) |
| 55 |
1 4 2 3 54
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) |
| 56 |
55
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> ( P Btwn <. Q , x >. -> x Colinear <. P , Q >. ) ) |
| 57 |
53 56
|
mpd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ R Btwn <. P , x >. ) ) -> x Colinear <. P , Q >. ) |
| 58 |
57
|
expr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( R Btwn <. P , x >. -> x Colinear <. P , Q >. ) ) |
| 59 |
|
simprr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> x Btwn <. P , R >. ) |
| 60 |
1 2 3 17 59
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> x Btwn <. R , P >. ) |
| 61 |
|
simprl |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> P Btwn <. Q , R >. ) |
| 62 |
1 3 4 17 61
|
btwncomand |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> P Btwn <. R , Q >. ) |
| 63 |
1 17 2 3 4 60 62
|
btwnexch3and |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> P Btwn <. x , Q >. ) |
| 64 |
|
btwncolinear2 |
|- ( ( N e. NN /\ ( x e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P e. ( EE ` N ) ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) |
| 65 |
1 2 4 3 64
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) |
| 66 |
65
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> ( P Btwn <. x , Q >. -> x Colinear <. P , Q >. ) ) |
| 67 |
63 66
|
mpd |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ ( P Btwn <. Q , R >. /\ x Btwn <. P , R >. ) ) -> x Colinear <. P , Q >. ) |
| 68 |
67
|
expr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Btwn <. P , R >. -> x Colinear <. P , Q >. ) ) |
| 69 |
58 68
|
jaod |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) -> x Colinear <. P , Q >. ) ) |
| 70 |
44 69
|
jaod |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> x Colinear <. P , Q >. ) ) |
| 71 |
38 70
|
jaod |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) -> x Colinear <. P , Q >. ) ) |
| 72 |
33 71
|
impbid |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) |
| 73 |
|
pm5.63 |
|- ( ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( x = P \/ ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) |
| 74 |
|
df-ne |
|- ( x =/= P <-> -. x = P ) |
| 75 |
74
|
anbi1i |
|- ( ( x =/= P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 76 |
|
andi |
|- ( ( x =/= P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 77 |
75 76
|
bitr3i |
|- ( ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 78 |
77
|
orbi2i |
|- ( ( x = P \/ ( -. x = P /\ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) |
| 79 |
73 78
|
bitri |
|- ( ( x = P \/ ( ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) \/ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) |
| 80 |
72 79
|
bitrdi |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) ) |
| 81 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( P OutsideOf <. Q , x >. <-> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) |
| 82 |
1 3 4 2 81
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. Q , x >. <-> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) |
| 83 |
|
3simpc |
|- ( ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) -> ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) |
| 84 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> P =/= Q ) |
| 85 |
84
|
necomd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> Q =/= P ) |
| 86 |
|
simprrl |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> x =/= P ) |
| 87 |
|
simprrr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) |
| 88 |
85 86 87
|
3jca |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) -> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) |
| 89 |
88
|
expr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) -> ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) |
| 90 |
83 89
|
impbid2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( Q =/= P /\ x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) <-> ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) |
| 91 |
82 90
|
bitrd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. Q , x >. <-> ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) ) ) |
| 92 |
|
broutsideof2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( P OutsideOf <. R , x >. <-> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 93 |
1 3 17 2 92
|
syl13anc |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. R , x >. <-> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 94 |
|
3simpc |
|- ( ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 95 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> P =/= R ) |
| 96 |
95
|
necomd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> R =/= P ) |
| 97 |
|
simprrl |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> x =/= P ) |
| 98 |
|
simprrr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) |
| 99 |
96 97 98
|
3jca |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ ( x e. ( EE ` N ) /\ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) -> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) |
| 100 |
99
|
expr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) -> ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 101 |
94 100
|
impbid2 |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( R =/= P /\ x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) <-> ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 102 |
93 101
|
bitrd |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( P OutsideOf <. R , x >. <-> ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) |
| 103 |
91 102
|
orbi12d |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) -> ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) |
| 104 |
103
|
adantr |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) <-> ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) |
| 105 |
104
|
orbi2d |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) <-> ( x = P \/ ( ( x =/= P /\ ( Q Btwn <. P , x >. \/ x Btwn <. P , Q >. ) ) \/ ( x =/= P /\ ( R Btwn <. P , x >. \/ x Btwn <. P , R >. ) ) ) ) ) ) |
| 106 |
80 105
|
bitr4d |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) ) ) |
| 107 |
|
orcom |
|- ( ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) <-> ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) \/ x = P ) ) |
| 108 |
|
or32 |
|- ( ( ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) \/ x = P ) <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) |
| 109 |
107 108
|
bitri |
|- ( ( x = P \/ ( P OutsideOf <. Q , x >. \/ P OutsideOf <. R , x >. ) ) <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) |
| 110 |
106 109
|
bitrdi |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ x e. ( EE ` N ) ) /\ P Btwn <. Q , R >. ) -> ( x Colinear <. P , Q >. <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) ) |
| 111 |
110
|
an32s |
|- ( ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) ) ) |
| 112 |
111
|
rabbidva |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> { x e. ( EE ` N ) | x Colinear <. P , Q >. } = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } ) |
| 113 |
|
simp1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> N e. NN ) |
| 114 |
|
simp21 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> P e. ( EE ` N ) ) |
| 115 |
|
simp22 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> Q e. ( EE ` N ) ) |
| 116 |
|
simp3l |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> P =/= Q ) |
| 117 |
|
fvline2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) |
| 118 |
113 114 115 116 117
|
syl13anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) |
| 119 |
118
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) |
| 120 |
|
fvray |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Ray Q ) = { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } ) |
| 121 |
113 114 115 116 120
|
syl13anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Ray Q ) = { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } ) |
| 122 |
|
rabsn |
|- ( P e. ( EE ` N ) -> { x e. ( EE ` N ) | x = P } = { P } ) |
| 123 |
114 122
|
syl |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> { x e. ( EE ` N ) | x = P } = { P } ) |
| 124 |
123
|
eqcomd |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> { P } = { x e. ( EE ` N ) | x = P } ) |
| 125 |
121 124
|
uneq12d |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( ( P Ray Q ) u. { P } ) = ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) ) |
| 126 |
|
simp23 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> R e. ( EE ` N ) ) |
| 127 |
|
simp3r |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> P =/= R ) |
| 128 |
|
fvray |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ R e. ( EE ` N ) /\ P =/= R ) ) -> ( P Ray R ) = { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) |
| 129 |
113 114 126 127 128
|
syl13anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Ray R ) = { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) |
| 130 |
125 129
|
uneq12d |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) = ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) ) |
| 131 |
130
|
adantr |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) = ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) ) |
| 132 |
|
unrab |
|- ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) = { x e. ( EE ` N ) | ( P OutsideOf <. Q , x >. \/ x = P ) } |
| 133 |
132
|
uneq1i |
|- ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) = ( { x e. ( EE ` N ) | ( P OutsideOf <. Q , x >. \/ x = P ) } u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) |
| 134 |
|
unrab |
|- ( { x e. ( EE ` N ) | ( P OutsideOf <. Q , x >. \/ x = P ) } u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } |
| 135 |
133 134
|
eqtri |
|- ( ( { x e. ( EE ` N ) | P OutsideOf <. Q , x >. } u. { x e. ( EE ` N ) | x = P } ) u. { x e. ( EE ` N ) | P OutsideOf <. R , x >. } ) = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } |
| 136 |
131 135
|
eqtrdi |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) = { x e. ( EE ` N ) | ( ( P OutsideOf <. Q , x >. \/ x = P ) \/ P OutsideOf <. R , x >. ) } ) |
| 137 |
112 119 136
|
3eqtr4d |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) /\ P Btwn <. Q , R >. ) -> ( P Line Q ) = ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) ) |
| 138 |
137
|
ex |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ R e. ( EE ` N ) ) /\ ( P =/= Q /\ P =/= R ) ) -> ( P Btwn <. Q , R >. -> ( P Line Q ) = ( ( ( P Ray Q ) u. { P } ) u. ( P Ray R ) ) ) ) |