Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
|- ( P Ray A ) = ( Ray ` <. P , A >. ) |
2 |
|
eqid |
|- { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } |
3 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
4 |
3
|
eleq2d |
|- ( n = N -> ( P e. ( EE ` n ) <-> P e. ( EE ` N ) ) ) |
5 |
3
|
eleq2d |
|- ( n = N -> ( A e. ( EE ` n ) <-> A e. ( EE ` N ) ) ) |
6 |
4 5
|
3anbi12d |
|- ( n = N -> ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) <-> ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) ) |
7 |
|
rabeq |
|- ( ( EE ` n ) = ( EE ` N ) -> { x e. ( EE ` n ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) |
8 |
3 7
|
syl |
|- ( n = N -> { x e. ( EE ` n ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) |
9 |
8
|
eqeq2d |
|- ( n = N -> ( { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } <-> { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) |
10 |
6 9
|
anbi12d |
|- ( n = N -> ( ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) <-> ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) ) |
11 |
10
|
rspcev |
|- ( ( N e. NN /\ ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) -> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) |
12 |
2 11
|
mpanr2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) |
13 |
|
simpr1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> P e. ( EE ` N ) ) |
14 |
|
simpr2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> A e. ( EE ` N ) ) |
15 |
|
fvex |
|- ( EE ` N ) e. _V |
16 |
15
|
rabex |
|- { x e. ( EE ` N ) | P OutsideOf <. A , x >. } e. _V |
17 |
|
eleq1 |
|- ( p = P -> ( p e. ( EE ` n ) <-> P e. ( EE ` n ) ) ) |
18 |
|
neeq1 |
|- ( p = P -> ( p =/= a <-> P =/= a ) ) |
19 |
17 18
|
3anbi13d |
|- ( p = P -> ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) <-> ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) ) ) |
20 |
|
breq1 |
|- ( p = P -> ( p OutsideOf <. a , x >. <-> P OutsideOf <. a , x >. ) ) |
21 |
20
|
rabbidv |
|- ( p = P -> { x e. ( EE ` n ) | p OutsideOf <. a , x >. } = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) |
22 |
21
|
eqeq2d |
|- ( p = P -> ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) ) |
23 |
19 22
|
anbi12d |
|- ( p = P -> ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) ) ) |
24 |
23
|
rexbidv |
|- ( p = P -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. n e. NN ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) ) ) |
25 |
|
eleq1 |
|- ( a = A -> ( a e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) |
26 |
|
neeq2 |
|- ( a = A -> ( P =/= a <-> P =/= A ) ) |
27 |
25 26
|
3anbi23d |
|- ( a = A -> ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) <-> ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) ) ) |
28 |
|
opeq1 |
|- ( a = A -> <. a , x >. = <. A , x >. ) |
29 |
28
|
breq2d |
|- ( a = A -> ( P OutsideOf <. a , x >. <-> P OutsideOf <. A , x >. ) ) |
30 |
29
|
rabbidv |
|- ( a = A -> { x e. ( EE ` n ) | P OutsideOf <. a , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) |
31 |
30
|
eqeq2d |
|- ( a = A -> ( r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } <-> r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) |
32 |
27 31
|
anbi12d |
|- ( a = A -> ( ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) <-> ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) |
33 |
32
|
rexbidv |
|- ( a = A -> ( E. n e. NN ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) |
34 |
|
eqeq1 |
|- ( r = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } <-> { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) |
35 |
34
|
anbi2d |
|- ( r = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) <-> ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) |
36 |
35
|
rexbidv |
|- ( r = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) |
37 |
24 33 36
|
eloprabg |
|- ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } e. _V ) -> ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) |
38 |
16 37
|
mp3an3 |
|- ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) |
39 |
13 14 38
|
syl2anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) |
40 |
12 39
|
mpbird |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) |
41 |
|
df-br |
|- ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } <-> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. Ray ) |
42 |
|
df-ray |
|- Ray = { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } |
43 |
42
|
eleq2i |
|- ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. Ray <-> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) |
44 |
41 43
|
bitri |
|- ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } <-> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) |
45 |
|
funray |
|- Fun Ray |
46 |
|
funbrfv |
|- ( Fun Ray -> ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) |
47 |
45 46
|
ax-mp |
|- ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) |
48 |
44 47
|
sylbir |
|- ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) |
49 |
40 48
|
syl |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) |
50 |
1 49
|
syl5eq |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> ( P Ray A ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) |