| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ov |  |-  ( P Ray A ) = ( Ray ` <. P , A >. ) | 
						
							| 2 |  | eqid |  |-  { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } | 
						
							| 3 |  | fveq2 |  |-  ( n = N -> ( EE ` n ) = ( EE ` N ) ) | 
						
							| 4 | 3 | eleq2d |  |-  ( n = N -> ( P e. ( EE ` n ) <-> P e. ( EE ` N ) ) ) | 
						
							| 5 | 3 | eleq2d |  |-  ( n = N -> ( A e. ( EE ` n ) <-> A e. ( EE ` N ) ) ) | 
						
							| 6 | 4 5 | 3anbi12d |  |-  ( n = N -> ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) <-> ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) ) | 
						
							| 7 |  | rabeq |  |-  ( ( EE ` n ) = ( EE ` N ) -> { x e. ( EE ` n ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) | 
						
							| 8 | 3 7 | syl |  |-  ( n = N -> { x e. ( EE ` n ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) | 
						
							| 9 | 8 | eqeq2d |  |-  ( n = N -> ( { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } <-> { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) | 
						
							| 10 | 6 9 | anbi12d |  |-  ( n = N -> ( ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) <-> ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 11 | 10 | rspcev |  |-  ( ( N e. NN /\ ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) -> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) | 
						
							| 12 | 2 11 | mpanr2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) | 
						
							| 13 |  | simpr1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> P e. ( EE ` N ) ) | 
						
							| 14 |  | simpr2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> A e. ( EE ` N ) ) | 
						
							| 15 |  | fvex |  |-  ( EE ` N ) e. _V | 
						
							| 16 | 15 | rabex |  |-  { x e. ( EE ` N ) | P OutsideOf <. A , x >. } e. _V | 
						
							| 17 |  | eleq1 |  |-  ( p = P -> ( p e. ( EE ` n ) <-> P e. ( EE ` n ) ) ) | 
						
							| 18 |  | neeq1 |  |-  ( p = P -> ( p =/= a <-> P =/= a ) ) | 
						
							| 19 | 17 18 | 3anbi13d |  |-  ( p = P -> ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) <-> ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) ) ) | 
						
							| 20 |  | breq1 |  |-  ( p = P -> ( p OutsideOf <. a , x >. <-> P OutsideOf <. a , x >. ) ) | 
						
							| 21 | 20 | rabbidv |  |-  ( p = P -> { x e. ( EE ` n ) | p OutsideOf <. a , x >. } = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) | 
						
							| 22 | 21 | eqeq2d |  |-  ( p = P -> ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) ) | 
						
							| 23 | 19 22 | anbi12d |  |-  ( p = P -> ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) ) ) | 
						
							| 24 | 23 | rexbidv |  |-  ( p = P -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. n e. NN ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) ) ) | 
						
							| 25 |  | eleq1 |  |-  ( a = A -> ( a e. ( EE ` n ) <-> A e. ( EE ` n ) ) ) | 
						
							| 26 |  | neeq2 |  |-  ( a = A -> ( P =/= a <-> P =/= A ) ) | 
						
							| 27 | 25 26 | 3anbi23d |  |-  ( a = A -> ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) <-> ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) ) ) | 
						
							| 28 |  | opeq1 |  |-  ( a = A -> <. a , x >. = <. A , x >. ) | 
						
							| 29 | 28 | breq2d |  |-  ( a = A -> ( P OutsideOf <. a , x >. <-> P OutsideOf <. A , x >. ) ) | 
						
							| 30 | 29 | rabbidv |  |-  ( a = A -> { x e. ( EE ` n ) | P OutsideOf <. a , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) | 
						
							| 31 | 30 | eqeq2d |  |-  ( a = A -> ( r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } <-> r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) | 
						
							| 32 | 27 31 | anbi12d |  |-  ( a = A -> ( ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) <-> ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 33 | 32 | rexbidv |  |-  ( a = A -> ( E. n e. NN ( ( P e. ( EE ` n ) /\ a e. ( EE ` n ) /\ P =/= a ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. a , x >. } ) <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 34 |  | eqeq1 |  |-  ( r = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } <-> { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) | 
						
							| 35 | 34 | anbi2d |  |-  ( r = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) <-> ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 36 | 35 | rexbidv |  |-  ( r = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ r = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 37 | 24 33 36 | eloprabg |  |-  ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } e. _V ) -> ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 38 | 16 37 | mp3an3 |  |-  ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 39 | 13 14 38 | syl2anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } <-> E. n e. NN ( ( P e. ( EE ` n ) /\ A e. ( EE ` n ) /\ P =/= A ) /\ { x e. ( EE ` N ) | P OutsideOf <. A , x >. } = { x e. ( EE ` n ) | P OutsideOf <. A , x >. } ) ) ) | 
						
							| 40 | 12 39 | mpbird |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) | 
						
							| 41 |  | df-br |  |-  ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } <-> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. Ray ) | 
						
							| 42 |  | df-ray |  |-  Ray = { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } | 
						
							| 43 | 42 | eleq2i |  |-  ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. Ray <-> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) | 
						
							| 44 | 41 43 | bitri |  |-  ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } <-> <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) | 
						
							| 45 |  | funray |  |-  Fun Ray | 
						
							| 46 |  | funbrfv |  |-  ( Fun Ray -> ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) ) | 
						
							| 47 | 45 46 | ax-mp |  |-  ( <. P , A >. Ray { x e. ( EE ` N ) | P OutsideOf <. A , x >. } -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) | 
						
							| 48 | 44 47 | sylbir |  |-  ( <. <. P , A >. , { x e. ( EE ` N ) | P OutsideOf <. A , x >. } >. e. { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) | 
						
							| 49 | 40 48 | syl |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> ( Ray ` <. P , A >. ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) | 
						
							| 50 | 1 49 | eqtrid |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ A e. ( EE ` N ) /\ P =/= A ) ) -> ( P Ray A ) = { x e. ( EE ` N ) | P OutsideOf <. A , x >. } ) |