| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reeanv |  |-  ( E. n e. NN E. m e. NN ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) <-> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) | 
						
							| 2 |  | simp1 |  |-  ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) -> p e. ( EE ` n ) ) | 
						
							| 3 |  | simp1 |  |-  ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) -> p e. ( EE ` m ) ) | 
						
							| 4 |  | axdimuniq |  |-  ( ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( m e. NN /\ p e. ( EE ` m ) ) ) -> n = m ) | 
						
							| 5 |  | fveq2 |  |-  ( n = m -> ( EE ` n ) = ( EE ` m ) ) | 
						
							| 6 |  | rabeq |  |-  ( ( EE ` n ) = ( EE ` m ) -> { x e. ( EE ` n ) | p OutsideOf <. a , x >. } = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) | 
						
							| 7 | 5 6 | syl |  |-  ( n = m -> { x e. ( EE ` n ) | p OutsideOf <. a , x >. } = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) | 
						
							| 8 | 7 | eqeq2d |  |-  ( n = m -> ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> r = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) | 
						
							| 9 | 8 | anbi1d |  |-  ( n = m -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) <-> ( r = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) | 
						
							| 10 |  | eqtr3 |  |-  ( ( r = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) | 
						
							| 11 | 9 10 | biimtrdi |  |-  ( n = m -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) | 
						
							| 12 | 4 11 | syl |  |-  ( ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( m e. NN /\ p e. ( EE ` m ) ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) | 
						
							| 13 | 12 | an4s |  |-  ( ( ( n e. NN /\ m e. NN ) /\ ( p e. ( EE ` n ) /\ p e. ( EE ` m ) ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) | 
						
							| 14 | 13 | ex |  |-  ( ( n e. NN /\ m e. NN ) -> ( ( p e. ( EE ` n ) /\ p e. ( EE ` m ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) ) | 
						
							| 15 | 14 | com3l |  |-  ( ( p e. ( EE ` n ) /\ p e. ( EE ` m ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) ) | 
						
							| 16 | 2 3 15 | syl2an |  |-  ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) ) /\ ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) | 
						
							| 18 | 17 | an4s |  |-  ( ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) | 
						
							| 19 | 18 | com12 |  |-  ( ( n e. NN /\ m e. NN ) -> ( ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) ) | 
						
							| 20 | 19 | rexlimivv |  |-  ( E. n e. NN E. m e. NN ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) | 
						
							| 21 | 1 20 | sylbir |  |-  ( ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) | 
						
							| 22 | 21 | gen2 |  |-  A. r A. s ( ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) | 
						
							| 23 |  | eqeq1 |  |-  ( r = s -> ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) ) | 
						
							| 24 | 23 | anbi2d |  |-  ( r = s -> ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( r = s -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) ) ) | 
						
							| 26 | 5 | eleq2d |  |-  ( n = m -> ( p e. ( EE ` n ) <-> p e. ( EE ` m ) ) ) | 
						
							| 27 | 5 | eleq2d |  |-  ( n = m -> ( a e. ( EE ` n ) <-> a e. ( EE ` m ) ) ) | 
						
							| 28 | 26 27 | 3anbi12d |  |-  ( n = m -> ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) <-> ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) ) ) | 
						
							| 29 | 7 | eqeq2d |  |-  ( n = m -> ( s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) | 
						
							| 30 | 28 29 | anbi12d |  |-  ( n = m -> ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) | 
						
							| 31 | 30 | cbvrexvw |  |-  ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) | 
						
							| 32 | 25 31 | bitrdi |  |-  ( r = s -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) | 
						
							| 33 | 32 | mo4 |  |-  ( E* r E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> A. r A. s ( ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) ) | 
						
							| 34 | 22 33 | mpbir |  |-  E* r E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) | 
						
							| 35 | 34 | funoprab |  |-  Fun { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } | 
						
							| 36 |  | df-ray |  |-  Ray = { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } | 
						
							| 37 | 36 | funeqi |  |-  ( Fun Ray <-> Fun { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) | 
						
							| 38 | 35 37 | mpbir |  |-  Fun Ray |