Step |
Hyp |
Ref |
Expression |
1 |
|
reeanv |
|- ( E. n e. NN E. m e. NN ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) <-> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) |
2 |
|
simp1 |
|- ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) -> p e. ( EE ` n ) ) |
3 |
|
simp1 |
|- ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) -> p e. ( EE ` m ) ) |
4 |
|
axdimuniq |
|- ( ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( m e. NN /\ p e. ( EE ` m ) ) ) -> n = m ) |
5 |
|
fveq2 |
|- ( n = m -> ( EE ` n ) = ( EE ` m ) ) |
6 |
|
rabeq |
|- ( ( EE ` n ) = ( EE ` m ) -> { x e. ( EE ` n ) | p OutsideOf <. a , x >. } = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) |
7 |
5 6
|
syl |
|- ( n = m -> { x e. ( EE ` n ) | p OutsideOf <. a , x >. } = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) |
8 |
7
|
eqeq2d |
|- ( n = m -> ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> r = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) |
9 |
8
|
anbi1d |
|- ( n = m -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) <-> ( r = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) |
10 |
|
eqtr3 |
|- ( ( r = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) |
11 |
9 10
|
syl6bi |
|- ( n = m -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) |
12 |
4 11
|
syl |
|- ( ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( m e. NN /\ p e. ( EE ` m ) ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) |
13 |
12
|
an4s |
|- ( ( ( n e. NN /\ m e. NN ) /\ ( p e. ( EE ` n ) /\ p e. ( EE ` m ) ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) |
14 |
13
|
ex |
|- ( ( n e. NN /\ m e. NN ) -> ( ( p e. ( EE ` n ) /\ p e. ( EE ` m ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> r = s ) ) ) |
15 |
14
|
com3l |
|- ( ( p e. ( EE ` n ) /\ p e. ( EE ` m ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) ) |
16 |
2 3 15
|
syl2an |
|- ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) ) -> ( ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) ) |
17 |
16
|
imp |
|- ( ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) ) /\ ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) |
18 |
17
|
an4s |
|- ( ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> ( ( n e. NN /\ m e. NN ) -> r = s ) ) |
19 |
18
|
com12 |
|- ( ( n e. NN /\ m e. NN ) -> ( ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) ) |
20 |
19
|
rexlimivv |
|- ( E. n e. NN E. m e. NN ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) |
21 |
1 20
|
sylbir |
|- ( ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) |
22 |
21
|
gen2 |
|- A. r A. s ( ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) |
23 |
|
eqeq1 |
|- ( r = s -> ( r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) ) |
24 |
23
|
anbi2d |
|- ( r = s -> ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) ) ) |
25 |
24
|
rexbidv |
|- ( r = s -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) ) ) |
26 |
5
|
eleq2d |
|- ( n = m -> ( p e. ( EE ` n ) <-> p e. ( EE ` m ) ) ) |
27 |
5
|
eleq2d |
|- ( n = m -> ( a e. ( EE ` n ) <-> a e. ( EE ` m ) ) ) |
28 |
26 27
|
3anbi12d |
|- ( n = m -> ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) <-> ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) ) ) |
29 |
7
|
eqeq2d |
|- ( n = m -> ( s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } <-> s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) |
30 |
28 29
|
anbi12d |
|- ( n = m -> ( ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) |
31 |
30
|
cbvrexvw |
|- ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ s = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) |
32 |
25 31
|
bitrdi |
|- ( r = s -> ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) ) |
33 |
32
|
mo4 |
|- ( E* r E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) <-> A. r A. s ( ( E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) /\ E. m e. NN ( ( p e. ( EE ` m ) /\ a e. ( EE ` m ) /\ p =/= a ) /\ s = { x e. ( EE ` m ) | p OutsideOf <. a , x >. } ) ) -> r = s ) ) |
34 |
22 33
|
mpbir |
|- E* r E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) |
35 |
34
|
funoprab |
|- Fun { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } |
36 |
|
df-ray |
|- Ray = { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } |
37 |
36
|
funeqi |
|- ( Fun Ray <-> Fun { <. <. p , a >. , r >. | E. n e. NN ( ( p e. ( EE ` n ) /\ a e. ( EE ` n ) /\ p =/= a ) /\ r = { x e. ( EE ` n ) | p OutsideOf <. a , x >. } ) } ) |
38 |
35 37
|
mpbir |
|- Fun Ray |