| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reeanv | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑚  ∈  ℕ ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  ↔  ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  →  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  →  𝑝  ∈  ( 𝔼 ‘ 𝑚 ) ) | 
						
							| 4 |  | axdimuniq | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑚 ) ) )  →  𝑛  =  𝑚 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝔼 ‘ 𝑛 )  =  ( 𝔼 ‘ 𝑚 ) ) | 
						
							| 6 |  | rabeq | ⊢ ( ( 𝔼 ‘ 𝑛 )  =  ( 𝔼 ‘ 𝑚 )  →  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑛  =  𝑚  →  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ↔  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) | 
						
							| 9 | 8 | anbi1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 10 |  | eqtr3 | ⊢ ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  →  𝑟  =  𝑠 ) | 
						
							| 11 | 9 10 | biimtrdi | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  →  𝑟  =  𝑠 ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑚 ) ) )  →  ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  →  𝑟  =  𝑠 ) ) | 
						
							| 13 | 12 | an4s | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑚 ) ) )  →  ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  →  𝑟  =  𝑠 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑚 ) )  →  ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  →  𝑟  =  𝑠 ) ) ) | 
						
							| 15 | 14 | com3l | ⊢ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑚 ) )  →  ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  →  ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  𝑟  =  𝑠 ) ) ) | 
						
							| 16 | 2 3 15 | syl2an | ⊢ ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 ) )  →  ( ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  →  ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  𝑟  =  𝑠 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 ) )  ∧  ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  →  ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  𝑟  =  𝑠 ) ) | 
						
							| 18 | 17 | an4s | ⊢ ( ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  →  ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  𝑟  =  𝑠 ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  →  𝑟  =  𝑠 ) ) | 
						
							| 20 | 19 | rexlimivv | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑚  ∈  ℕ ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  →  𝑟  =  𝑠 ) | 
						
							| 21 | 1 20 | sylbir | ⊢ ( ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  →  𝑟  =  𝑠 ) | 
						
							| 22 | 21 | gen2 | ⊢ ∀ 𝑟 ∀ 𝑠 ( ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  →  𝑟  =  𝑠 ) | 
						
							| 23 |  | eqeq1 | ⊢ ( 𝑟  =  𝑠  →  ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ↔  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) | 
						
							| 24 | 23 | anbi2d | ⊢ ( 𝑟  =  𝑠  →  ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( 𝑟  =  𝑠  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 26 | 5 | eleq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝑝  ∈  ( 𝔼 ‘ 𝑚 ) ) ) | 
						
							| 27 | 5 | eleq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝑎  ∈  ( 𝔼 ‘ 𝑚 ) ) ) | 
						
							| 28 | 26 27 | 3anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ↔  ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 ) ) ) | 
						
							| 29 | 7 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ↔  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) | 
						
							| 30 | 28 29 | anbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 31 | 30 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ∃ 𝑚  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) | 
						
							| 32 | 25 31 | bitrdi | ⊢ ( 𝑟  =  𝑠  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ∃ 𝑚  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 33 | 32 | mo4 | ⊢ ( ∃* 𝑟 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ∀ 𝑟 ∀ 𝑠 ( ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ∧  ∃ 𝑚  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑚 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑠  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑚 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) )  →  𝑟  =  𝑠 ) ) | 
						
							| 34 | 22 33 | mpbir | ⊢ ∃* 𝑟 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) | 
						
							| 35 | 34 | funoprab | ⊢ Fun  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } | 
						
							| 36 |  | df-ray | ⊢ Ray  =  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } | 
						
							| 37 | 36 | funeqi | ⊢ ( Fun  Ray  ↔  Fun  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } ) | 
						
							| 38 | 35 37 | mpbir | ⊢ Fun  Ray |