Step |
Hyp |
Ref |
Expression |
1 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ↔ ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
2 |
|
simp1 |
⊢ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) → 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) |
3 |
|
simp1 |
⊢ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) → 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ) |
4 |
|
axdimuniq |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ) ) → 𝑛 = 𝑚 ) |
5 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑚 ) ) |
6 |
|
rabeq |
⊢ ( ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑚 ) → { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) |
7 |
5 6
|
syl |
⊢ ( 𝑛 = 𝑚 → { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ↔ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
10 |
|
eqtr3 |
⊢ ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) → 𝑟 = 𝑠 ) |
11 |
9 10
|
syl6bi |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) → 𝑟 = 𝑠 ) ) |
12 |
4 11
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ) ) → ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) → 𝑟 = 𝑠 ) ) |
13 |
12
|
an4s |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ) ) → ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) → 𝑟 = 𝑠 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ) → ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) → 𝑟 = 𝑠 ) ) ) |
15 |
14
|
com3l |
⊢ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ) → ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) → ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → 𝑟 = 𝑠 ) ) ) |
16 |
2 3 15
|
syl2an |
⊢ ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ) → ( ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) → ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → 𝑟 = 𝑠 ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ) ∧ ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) → ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → 𝑟 = 𝑠 ) ) |
18 |
17
|
an4s |
⊢ ( ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) → ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → 𝑟 = 𝑠 ) ) |
19 |
18
|
com12 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) → 𝑟 = 𝑠 ) ) |
20 |
19
|
rexlimivv |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) → 𝑟 = 𝑠 ) |
21 |
1 20
|
sylbir |
⊢ ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) → 𝑟 = 𝑠 ) |
22 |
21
|
gen2 |
⊢ ∀ 𝑟 ∀ 𝑠 ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) → 𝑟 = 𝑠 ) |
23 |
|
eqeq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ↔ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑟 = 𝑠 → ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
26 |
5
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ) ) |
27 |
5
|
eleq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ) ) |
28 |
26 27
|
3anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ↔ ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ) ) |
29 |
7
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ↔ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) |
30 |
28 29
|
anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
31 |
30
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) |
32 |
25 31
|
bitrdi |
⊢ ( 𝑟 = 𝑠 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
33 |
32
|
mo4 |
⊢ ( ∃* 𝑟 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ∀ 𝑟 ∀ 𝑠 ( ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ∧ ∃ 𝑚 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑚 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑠 = { 𝑥 ∈ ( 𝔼 ‘ 𝑚 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) → 𝑟 = 𝑠 ) ) |
34 |
22 33
|
mpbir |
⊢ ∃* 𝑟 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) |
35 |
34
|
funoprab |
⊢ Fun { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } |
36 |
|
df-ray |
⊢ Ray = { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } |
37 |
36
|
funeqi |
⊢ ( Fun Ray ↔ Fun { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } ) |
38 |
35 37
|
mpbir |
⊢ Fun Ray |