Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
⊢ ( 𝑃 Ray 𝐴 ) = ( Ray ‘ 〈 𝑃 , 𝐴 〉 ) |
2 |
|
eqid |
⊢ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } |
3 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
4 |
3
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
5 |
3
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
6 |
4 5
|
3anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) ) |
7 |
|
rabeq |
⊢ ( ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) → { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) |
8 |
3 7
|
syl |
⊢ ( 𝑛 = 𝑁 → { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑛 = 𝑁 → ( { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ↔ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) |
10 |
6 9
|
anbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ↔ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
11 |
10
|
rspcev |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) |
12 |
2 11
|
mpanr2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) |
13 |
|
simpr1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
14 |
|
simpr2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
15 |
|
fvex |
⊢ ( 𝔼 ‘ 𝑁 ) ∈ V |
16 |
15
|
rabex |
⊢ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ∈ V |
17 |
|
eleq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
18 |
|
neeq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≠ 𝑎 ↔ 𝑃 ≠ 𝑎 ) ) |
19 |
17 18
|
3anbi13d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝑎 ) ) ) |
20 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 ↔ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 ) ) |
21 |
20
|
rabbidv |
⊢ ( 𝑝 = 𝑃 → { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ↔ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) |
23 |
19 22
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
24 |
23
|
rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ) ) |
25 |
|
eleq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
26 |
|
neeq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑃 ≠ 𝑎 ↔ 𝑃 ≠ 𝐴 ) ) |
27 |
25 26
|
3anbi23d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝑎 ) ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ) ) |
28 |
|
opeq1 |
⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , 𝑥 〉 = 〈 𝐴 , 𝑥 〉 ) |
29 |
28
|
breq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 ↔ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 ) ) |
30 |
29
|
rabbidv |
⊢ ( 𝑎 = 𝐴 → { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } ↔ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) |
32 |
27 31
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
33 |
32
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝑎 , 𝑥 〉 } ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
34 |
|
eqeq1 |
⊢ ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } → ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ↔ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) |
35 |
34
|
anbi2d |
⊢ ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } → ( ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ↔ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } → ( ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
37 |
24 33 36
|
eloprabg |
⊢ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ∈ V ) → ( 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
38 |
16 37
|
mp3an3 |
⊢ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
39 |
13 14 38
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) → ( 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑃 ≠ 𝐴 ) ∧ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) ) |
40 |
12 39
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) → 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } ) |
41 |
|
df-br |
⊢ ( 〈 𝑃 , 𝐴 〉 Ray { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ↔ 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ Ray ) |
42 |
|
df-ray |
⊢ Ray = { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } |
43 |
42
|
eleq2i |
⊢ ( 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ Ray ↔ 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } ) |
44 |
41 43
|
bitri |
⊢ ( 〈 𝑃 , 𝐴 〉 Ray { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ↔ 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } ) |
45 |
|
funray |
⊢ Fun Ray |
46 |
|
funbrfv |
⊢ ( Fun Ray → ( 〈 𝑃 , 𝐴 〉 Ray { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } → ( Ray ‘ 〈 𝑃 , 𝐴 〉 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) ) |
47 |
45 46
|
ax-mp |
⊢ ( 〈 𝑃 , 𝐴 〉 Ray { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } → ( Ray ‘ 〈 𝑃 , 𝐴 〉 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) |
48 |
44 47
|
sylbir |
⊢ ( 〈 〈 𝑃 , 𝐴 〉 , { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } 〉 ∈ { 〈 〈 𝑝 , 𝑎 〉 , 𝑟 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑎 ) ∧ 𝑟 = { 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑝 OutsideOf 〈 𝑎 , 𝑥 〉 } ) } → ( Ray ‘ 〈 𝑃 , 𝐴 〉 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) |
49 |
40 48
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) → ( Ray ‘ 〈 𝑃 , 𝐴 〉 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) |
50 |
1 49
|
syl5eq |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝐴 ) ) → ( 𝑃 Ray 𝐴 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑃 OutsideOf 〈 𝐴 , 𝑥 〉 } ) |