| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ov | ⊢ ( 𝑃 Ray 𝐴 )  =  ( Ray ‘ 〈 𝑃 ,  𝐴 〉 ) | 
						
							| 2 |  | eqid | ⊢ { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝔼 ‘ 𝑛 )  =  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑛  =  𝑁  →  ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 5 | 3 | eleq2d | ⊢ ( 𝑛  =  𝑁  →  ( 𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) ) | 
						
							| 6 | 4 5 | 3anbi12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ↔  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) ) ) | 
						
							| 7 |  | rabeq | ⊢ ( ( 𝔼 ‘ 𝑛 )  =  ( 𝔼 ‘ 𝑁 )  →  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝑛  =  𝑁  →  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑛  =  𝑁  →  ( { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  ↔  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 10 | 6 9 | anbi12d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } )  ↔  ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 11 | 10 | rspcev | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) )  →  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 12 | 2 11 | mpanr2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) )  →  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 13 |  | simpr1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 14 |  | simpr2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 15 |  | fvex | ⊢ ( 𝔼 ‘ 𝑁 )  ∈  V | 
						
							| 16 | 15 | rabex | ⊢ { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  ∈  V | 
						
							| 17 |  | eleq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝑃  ∈  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 18 |  | neeq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  ≠  𝑎  ↔  𝑃  ≠  𝑎 ) ) | 
						
							| 19 | 17 18 | 3anbi13d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ↔  ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝑎 ) ) ) | 
						
							| 20 |  | breq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉  ↔  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 ) ) | 
						
							| 21 | 20 | rabbidv | ⊢ ( 𝑝  =  𝑃  →  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑝  =  𝑃  →  ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ↔  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) | 
						
							| 23 | 19 22 | anbi12d | ⊢ ( 𝑝  =  𝑃  →  ( ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( 𝑝  =  𝑃  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) ) ) | 
						
							| 25 |  | eleq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ↔  𝐴  ∈  ( 𝔼 ‘ 𝑛 ) ) ) | 
						
							| 26 |  | neeq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑃  ≠  𝑎  ↔  𝑃  ≠  𝐴 ) ) | 
						
							| 27 | 25 26 | 3anbi23d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝑎 )  ↔  ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 ) ) ) | 
						
							| 28 |  | opeq1 | ⊢ ( 𝑎  =  𝐴  →  〈 𝑎 ,  𝑥 〉  =  〈 𝐴 ,  𝑥 〉 ) | 
						
							| 29 | 28 | breq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉  ↔  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 ) ) | 
						
							| 30 | 29 | rabbidv | ⊢ ( 𝑎  =  𝐴  →  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 31 | 30 | eqeq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 }  ↔  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 32 | 27 31 | anbi12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 33 | 32 | rexbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝑎 ,  𝑥 〉 } )  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 34 |  | eqeq1 | ⊢ ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  →  ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  ↔  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 35 | 34 | anbi2d | ⊢ ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  →  ( ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } )  ↔  ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 36 | 35 | rexbidv | ⊢ ( 𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } )  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 37 | 24 33 36 | eloprabg | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  ∈  V )  →  ( 〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) }  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 38 | 16 37 | mp3an3 | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) }  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 39 | 13 14 38 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) )  →  ( 〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) }  ↔  ∃ 𝑛  ∈  ℕ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑃  ≠  𝐴 )  ∧  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) ) | 
						
							| 40 | 12 39 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) )  →  〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } ) | 
						
							| 41 |  | df-br | ⊢ ( 〈 𝑃 ,  𝐴 〉 Ray { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  ↔  〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  Ray ) | 
						
							| 42 |  | df-ray | ⊢ Ray  =  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } | 
						
							| 43 | 42 | eleq2i | ⊢ ( 〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  Ray  ↔  〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } ) | 
						
							| 44 | 41 43 | bitri | ⊢ ( 〈 𝑃 ,  𝐴 〉 Ray { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  ↔  〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) } ) | 
						
							| 45 |  | funray | ⊢ Fun  Ray | 
						
							| 46 |  | funbrfv | ⊢ ( Fun  Ray  →  ( 〈 𝑃 ,  𝐴 〉 Ray { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  →  ( Ray ‘ 〈 𝑃 ,  𝐴 〉 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ ( 〈 𝑃 ,  𝐴 〉 Ray { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 }  →  ( Ray ‘ 〈 𝑃 ,  𝐴 〉 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 48 | 44 47 | sylbir | ⊢ ( 〈 〈 𝑃 ,  𝐴 〉 ,  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } 〉  ∈  { 〈 〈 𝑝 ,  𝑎 〉 ,  𝑟 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑎  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑎 )  ∧  𝑟  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑛 )  ∣  𝑝 OutsideOf 〈 𝑎 ,  𝑥 〉 } ) }  →  ( Ray ‘ 〈 𝑃 ,  𝐴 〉 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 49 | 40 48 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) )  →  ( Ray ‘ 〈 𝑃 ,  𝐴 〉 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) | 
						
							| 50 | 1 49 | eqtrid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝐴 ) )  →  ( 𝑃 Ray 𝐴 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑃 OutsideOf 〈 𝐴 ,  𝑥 〉 } ) |