Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|
2 |
|
simpr |
|
3 |
|
simpl21 |
|
4 |
|
simpl22 |
|
5 |
|
brcolinear |
|
6 |
1 2 3 4 5
|
syl13anc |
|
7 |
6
|
adantr |
|
8 |
|
olc |
|
9 |
8
|
orcd |
|
10 |
9
|
a1i |
|
11 |
|
simpl3l |
|
12 |
11
|
necomd |
|
13 |
12
|
adantr |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
13 14 15
|
3jca |
|
17 |
|
simpl23 |
|
18 |
|
btwnconn2 |
|
19 |
1 4 3 17 2 18
|
syl122anc |
|
20 |
19
|
adantr |
|
21 |
16 20
|
mpd |
|
22 |
21
|
olcd |
|
23 |
22
|
expr |
|
24 |
|
btwncom |
|
25 |
1 4 2 3 24
|
syl13anc |
|
26 |
|
orc |
|
27 |
26
|
orcd |
|
28 |
25 27
|
syl6bi |
|
29 |
28
|
adantr |
|
30 |
10 23 29
|
3jaod |
|
31 |
7 30
|
sylbid |
|
32 |
|
olc |
|
33 |
31 32
|
syl6 |
|
34 |
|
colineartriv1 |
|
35 |
1 3 4 34
|
syl3anc |
|
36 |
|
breq1 |
|
37 |
35 36
|
syl5ibrcom |
|
38 |
37
|
adantr |
|
39 |
|
btwncolinear3 |
|
40 |
1 3 2 4 39
|
syl13anc |
|
41 |
|
btwncolinear5 |
|
42 |
1 3 4 2 41
|
syl13anc |
|
43 |
40 42
|
jaod |
|
44 |
43
|
adantr |
|
45 |
|
simpl3r |
|
46 |
45
|
adantr |
|
47 |
|
simprl |
|
48 |
|
simprr |
|
49 |
46 47 48
|
3jca |
|
50 |
|
btwnouttr |
|
51 |
1 4 3 17 2 50
|
syl122anc |
|
52 |
51
|
adantr |
|
53 |
49 52
|
mpd |
|
54 |
|
btwncolinear4 |
|
55 |
1 4 2 3 54
|
syl13anc |
|
56 |
55
|
adantr |
|
57 |
53 56
|
mpd |
|
58 |
57
|
expr |
|
59 |
|
simprr |
|
60 |
1 2 3 17 59
|
btwncomand |
|
61 |
|
simprl |
|
62 |
1 3 4 17 61
|
btwncomand |
|
63 |
1 17 2 3 4 60 62
|
btwnexch3and |
|
64 |
|
btwncolinear2 |
|
65 |
1 2 4 3 64
|
syl13anc |
|
66 |
65
|
adantr |
|
67 |
63 66
|
mpd |
|
68 |
67
|
expr |
|
69 |
58 68
|
jaod |
|
70 |
44 69
|
jaod |
|
71 |
38 70
|
jaod |
|
72 |
33 71
|
impbid |
|
73 |
|
pm5.63 |
|
74 |
|
df-ne |
|
75 |
74
|
anbi1i |
|
76 |
|
andi |
|
77 |
75 76
|
bitr3i |
|
78 |
77
|
orbi2i |
|
79 |
73 78
|
bitri |
|
80 |
72 79
|
bitrdi |
|
81 |
|
broutsideof2 |
|
82 |
1 3 4 2 81
|
syl13anc |
|
83 |
|
3simpc |
|
84 |
|
simpl3l |
|
85 |
84
|
necomd |
|
86 |
|
simprrl |
|
87 |
|
simprrr |
|
88 |
85 86 87
|
3jca |
|
89 |
88
|
expr |
|
90 |
83 89
|
impbid2 |
|
91 |
82 90
|
bitrd |
|
92 |
|
broutsideof2 |
|
93 |
1 3 17 2 92
|
syl13anc |
|
94 |
|
3simpc |
|
95 |
|
simpl3r |
|
96 |
95
|
necomd |
|
97 |
|
simprrl |
|
98 |
|
simprrr |
|
99 |
96 97 98
|
3jca |
|
100 |
99
|
expr |
|
101 |
94 100
|
impbid2 |
|
102 |
93 101
|
bitrd |
|
103 |
91 102
|
orbi12d |
|
104 |
103
|
adantr |
|
105 |
104
|
orbi2d |
|
106 |
80 105
|
bitr4d |
|
107 |
|
orcom |
|
108 |
|
or32 |
|
109 |
107 108
|
bitri |
|
110 |
106 109
|
bitrdi |
|
111 |
110
|
an32s |
|
112 |
111
|
rabbidva |
|
113 |
|
simp1 |
|
114 |
|
simp21 |
|
115 |
|
simp22 |
|
116 |
|
simp3l |
|
117 |
|
fvline2 |
|
118 |
113 114 115 116 117
|
syl13anc |
|
119 |
118
|
adantr |
|
120 |
|
fvray |
|
121 |
113 114 115 116 120
|
syl13anc |
|
122 |
|
rabsn |
|
123 |
114 122
|
syl |
|
124 |
123
|
eqcomd |
|
125 |
121 124
|
uneq12d |
|
126 |
|
simp23 |
|
127 |
|
simp3r |
|
128 |
|
fvray |
|
129 |
113 114 126 127 128
|
syl13anc |
|
130 |
125 129
|
uneq12d |
|
131 |
130
|
adantr |
|
132 |
|
unrab |
|
133 |
132
|
uneq1i |
|
134 |
|
unrab |
|
135 |
133 134
|
eqtri |
|
136 |
131 135
|
eqtrdi |
|
137 |
112 119 136
|
3eqtr4d |
|
138 |
137
|
ex |
|