Metamath Proof Explorer


Theorem lineunray

Description: A line is composed of a point and the two rays emerging from it. Theorem 6.15 of Schwabhauser p. 45. (Contributed by Scott Fenton, 26-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion lineunray NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRPLineQ=PRayQPPRayR

Proof

Step Hyp Ref Expression
1 simpl1 NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NN
2 simpr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼Nx𝔼N
3 simpl21 NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NP𝔼N
4 simpl22 NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQ𝔼N
5 brcolinear Nx𝔼NP𝔼NQ𝔼NxColinearPQxBtwnPQPBtwnQxQBtwnxP
6 1 2 3 4 5 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxColinearPQxBtwnPQPBtwnQxQBtwnxP
7 6 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxColinearPQxBtwnPQPBtwnQxQBtwnxP
8 olc xBtwnPQQBtwnPxxBtwnPQ
9 8 orcd xBtwnPQQBtwnPxxBtwnPQRBtwnPxxBtwnPR
10 9 a1i NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPQQBtwnPxxBtwnPQRBtwnPxxBtwnPR
11 simpl3l NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPQ
12 11 necomd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQP
13 12 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxQP
14 simprl NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxPBtwnQR
15 simprr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxPBtwnQx
16 13 14 15 3jca NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxQPPBtwnQRPBtwnQx
17 simpl23 NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NR𝔼N
18 btwnconn2 NQ𝔼NP𝔼NR𝔼Nx𝔼NQPPBtwnQRPBtwnQxRBtwnPxxBtwnPR
19 1 4 3 17 2 18 syl122anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQPPBtwnQRPBtwnQxRBtwnPxxBtwnPR
20 19 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxQPPBtwnQRPBtwnQxRBtwnPxxBtwnPR
21 16 20 mpd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxRBtwnPxxBtwnPR
22 21 olcd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxQBtwnPxxBtwnPQRBtwnPxxBtwnPR
23 22 expr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPBtwnQxQBtwnPxxBtwnPQRBtwnPxxBtwnPR
24 btwncom NQ𝔼Nx𝔼NP𝔼NQBtwnxPQBtwnPx
25 1 4 2 3 24 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQBtwnxPQBtwnPx
26 orc QBtwnPxQBtwnPxxBtwnPQ
27 26 orcd QBtwnPxQBtwnPxxBtwnPQRBtwnPxxBtwnPR
28 25 27 syl6bi NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQBtwnxPQBtwnPxxBtwnPQRBtwnPxxBtwnPR
29 28 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRQBtwnxPQBtwnPxxBtwnPQRBtwnPxxBtwnPR
30 10 23 29 3jaod NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPQPBtwnQxQBtwnxPQBtwnPxxBtwnPQRBtwnPxxBtwnPR
31 7 30 sylbid NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxColinearPQQBtwnPxxBtwnPQRBtwnPxxBtwnPR
32 olc QBtwnPxxBtwnPQRBtwnPxxBtwnPRx=PQBtwnPxxBtwnPQRBtwnPxxBtwnPR
33 31 32 syl6 NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxColinearPQx=PQBtwnPxxBtwnPQRBtwnPxxBtwnPR
34 colineartriv1 NP𝔼NQ𝔼NPColinearPQ
35 1 3 4 34 syl3anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPColinearPQ
36 breq1 x=PxColinearPQPColinearPQ
37 35 36 syl5ibrcom NP𝔼NQ𝔼NR𝔼NPQPRx𝔼Nx=PxColinearPQ
38 37 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRx=PxColinearPQ
39 btwncolinear3 NP𝔼Nx𝔼NQ𝔼NQBtwnPxxColinearPQ
40 1 3 2 4 39 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQBtwnPxxColinearPQ
41 btwncolinear5 NP𝔼NQ𝔼Nx𝔼NxBtwnPQxColinearPQ
42 1 3 4 2 41 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxBtwnPQxColinearPQ
43 40 42 jaod NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQBtwnPxxBtwnPQxColinearPQ
44 43 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRQBtwnPxxBtwnPQxColinearPQ
45 simpl3r NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPR
46 45 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxPR
47 simprl NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxPBtwnQR
48 simprr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxRBtwnPx
49 46 47 48 3jca NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxPRPBtwnQRRBtwnPx
50 btwnouttr NQ𝔼NP𝔼NR𝔼Nx𝔼NPRPBtwnQRRBtwnPxPBtwnQx
51 1 4 3 17 2 50 syl122anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPRPBtwnQRRBtwnPxPBtwnQx
52 51 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxPRPBtwnQRRBtwnPxPBtwnQx
53 49 52 mpd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxPBtwnQx
54 btwncolinear4 NQ𝔼Nx𝔼NP𝔼NPBtwnQxxColinearPQ
55 1 4 2 3 54 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQxxColinearPQ
56 55 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxPBtwnQxxColinearPQ
57 53 56 mpd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxxColinearPQ
58 57 expr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxxColinearPQ
59 simprr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRxBtwnPR
60 1 2 3 17 59 btwncomand NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRxBtwnRP
61 simprl NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRPBtwnQR
62 1 3 4 17 61 btwncomand NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRPBtwnRQ
63 1 17 2 3 4 60 62 btwnexch3and NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRPBtwnxQ
64 btwncolinear2 Nx𝔼NQ𝔼NP𝔼NPBtwnxQxColinearPQ
65 1 2 4 3 64 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnxQxColinearPQ
66 65 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRPBtwnxQxColinearPQ
67 63 66 mpd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRxColinearPQ
68 67 expr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxBtwnPRxColinearPQ
69 58 68 jaod NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRRBtwnPxxBtwnPRxColinearPQ
70 44 69 jaod NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRQBtwnPxxBtwnPQRBtwnPxxBtwnPRxColinearPQ
71 38 70 jaod NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRx=PQBtwnPxxBtwnPQRBtwnPxxBtwnPRxColinearPQ
72 33 71 impbid NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxColinearPQx=PQBtwnPxxBtwnPQRBtwnPxxBtwnPR
73 pm5.63 x=PQBtwnPxxBtwnPQRBtwnPxxBtwnPRx=P¬x=PQBtwnPxxBtwnPQRBtwnPxxBtwnPR
74 df-ne xP¬x=P
75 74 anbi1i xPQBtwnPxxBtwnPQRBtwnPxxBtwnPR¬x=PQBtwnPxxBtwnPQRBtwnPxxBtwnPR
76 andi xPQBtwnPxxBtwnPQRBtwnPxxBtwnPRxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
77 75 76 bitr3i ¬x=PQBtwnPxxBtwnPQRBtwnPxxBtwnPRxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
78 77 orbi2i x=P¬x=PQBtwnPxxBtwnPQRBtwnPxxBtwnPRx=PxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
79 73 78 bitri x=PQBtwnPxxBtwnPQRBtwnPxxBtwnPRx=PxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
80 72 79 bitrdi NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxColinearPQx=PxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
81 broutsideof2 NP𝔼NQ𝔼Nx𝔼NPOutsideOfQxQPxPQBtwnPxxBtwnPQ
82 1 3 4 2 81 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPOutsideOfQxQPxPQBtwnPxxBtwnPQ
83 3simpc QPxPQBtwnPxxBtwnPQxPQBtwnPxxBtwnPQ
84 simpl3l NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPQBtwnPxxBtwnPQPQ
85 84 necomd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPQBtwnPxxBtwnPQQP
86 simprrl NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPQBtwnPxxBtwnPQxP
87 simprrr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPQBtwnPxxBtwnPQQBtwnPxxBtwnPQ
88 85 86 87 3jca NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPQBtwnPxxBtwnPQQPxPQBtwnPxxBtwnPQ
89 88 expr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPQBtwnPxxBtwnPQQPxPQBtwnPxxBtwnPQ
90 83 89 impbid2 NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NQPxPQBtwnPxxBtwnPQxPQBtwnPxxBtwnPQ
91 82 90 bitrd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPOutsideOfQxxPQBtwnPxxBtwnPQ
92 broutsideof2 NP𝔼NR𝔼Nx𝔼NPOutsideOfRxRPxPRBtwnPxxBtwnPR
93 1 3 17 2 92 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPOutsideOfRxRPxPRBtwnPxxBtwnPR
94 3simpc RPxPRBtwnPxxBtwnPRxPRBtwnPxxBtwnPR
95 simpl3r NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPRBtwnPxxBtwnPRPR
96 95 necomd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPRBtwnPxxBtwnPRRP
97 simprrl NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPRBtwnPxxBtwnPRxP
98 simprrr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPRBtwnPxxBtwnPRRBtwnPxxBtwnPR
99 96 97 98 3jca NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPRBtwnPxxBtwnPRRPxPRBtwnPxxBtwnPR
100 99 expr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NxPRBtwnPxxBtwnPRRPxPRBtwnPxxBtwnPR
101 94 100 impbid2 NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NRPxPRBtwnPxxBtwnPRxPRBtwnPxxBtwnPR
102 93 101 bitrd NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPOutsideOfRxxPRBtwnPxxBtwnPR
103 91 102 orbi12d NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPOutsideOfQxPOutsideOfRxxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
104 103 adantr NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRPOutsideOfQxPOutsideOfRxxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
105 104 orbi2d NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRx=PPOutsideOfQxPOutsideOfRxx=PxPQBtwnPxxBtwnPQxPRBtwnPxxBtwnPR
106 80 105 bitr4d NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxColinearPQx=PPOutsideOfQxPOutsideOfRx
107 orcom x=PPOutsideOfQxPOutsideOfRxPOutsideOfQxPOutsideOfRxx=P
108 or32 POutsideOfQxPOutsideOfRxx=PPOutsideOfQxx=PPOutsideOfRx
109 107 108 bitri x=PPOutsideOfQxPOutsideOfRxPOutsideOfQxx=PPOutsideOfRx
110 106 109 bitrdi NP𝔼NQ𝔼NR𝔼NPQPRx𝔼NPBtwnQRxColinearPQPOutsideOfQxx=PPOutsideOfRx
111 110 an32s NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRx𝔼NxColinearPQPOutsideOfQxx=PPOutsideOfRx
112 111 rabbidva NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRx𝔼N|xColinearPQ=x𝔼N|POutsideOfQxx=PPOutsideOfRx
113 simp1 NP𝔼NQ𝔼NR𝔼NPQPRN
114 simp21 NP𝔼NQ𝔼NR𝔼NPQPRP𝔼N
115 simp22 NP𝔼NQ𝔼NR𝔼NPQPRQ𝔼N
116 simp3l NP𝔼NQ𝔼NR𝔼NPQPRPQ
117 fvline2 NP𝔼NQ𝔼NPQPLineQ=x𝔼N|xColinearPQ
118 113 114 115 116 117 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRPLineQ=x𝔼N|xColinearPQ
119 118 adantr NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRPLineQ=x𝔼N|xColinearPQ
120 fvray NP𝔼NQ𝔼NPQPRayQ=x𝔼N|POutsideOfQx
121 113 114 115 116 120 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRPRayQ=x𝔼N|POutsideOfQx
122 rabsn P𝔼Nx𝔼N|x=P=P
123 114 122 syl NP𝔼NQ𝔼NR𝔼NPQPRx𝔼N|x=P=P
124 123 eqcomd NP𝔼NQ𝔼NR𝔼NPQPRP=x𝔼N|x=P
125 121 124 uneq12d NP𝔼NQ𝔼NR𝔼NPQPRPRayQP=x𝔼N|POutsideOfQxx𝔼N|x=P
126 simp23 NP𝔼NQ𝔼NR𝔼NPQPRR𝔼N
127 simp3r NP𝔼NQ𝔼NR𝔼NPQPRPR
128 fvray NP𝔼NR𝔼NPRPRayR=x𝔼N|POutsideOfRx
129 113 114 126 127 128 syl13anc NP𝔼NQ𝔼NR𝔼NPQPRPRayR=x𝔼N|POutsideOfRx
130 125 129 uneq12d NP𝔼NQ𝔼NR𝔼NPQPRPRayQPPRayR=x𝔼N|POutsideOfQxx𝔼N|x=Px𝔼N|POutsideOfRx
131 130 adantr NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRPRayQPPRayR=x𝔼N|POutsideOfQxx𝔼N|x=Px𝔼N|POutsideOfRx
132 unrab x𝔼N|POutsideOfQxx𝔼N|x=P=x𝔼N|POutsideOfQxx=P
133 132 uneq1i x𝔼N|POutsideOfQxx𝔼N|x=Px𝔼N|POutsideOfRx=x𝔼N|POutsideOfQxx=Px𝔼N|POutsideOfRx
134 unrab x𝔼N|POutsideOfQxx=Px𝔼N|POutsideOfRx=x𝔼N|POutsideOfQxx=PPOutsideOfRx
135 133 134 eqtri x𝔼N|POutsideOfQxx𝔼N|x=Px𝔼N|POutsideOfRx=x𝔼N|POutsideOfQxx=PPOutsideOfRx
136 131 135 eqtrdi NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRPRayQPPRayR=x𝔼N|POutsideOfQxx=PPOutsideOfRx
137 112 119 136 3eqtr4d NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRPLineQ=PRayQPPRayR
138 137 ex NP𝔼NQ𝔼NR𝔼NPQPRPBtwnQRPLineQ=PRayQPPRayR