Metamath Proof Explorer


Theorem lineunray

Description: A line is composed of a point and the two rays emerging from it. Theorem 6.15 of Schwabhauser p. 45. (Contributed by Scott Fenton, 26-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion lineunray N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R P Line Q = P Ray Q P P Ray R

Proof

Step Hyp Ref Expression
1 simpl1 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N N
2 simpr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x 𝔼 N
3 simpl21 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P 𝔼 N
4 simpl22 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q 𝔼 N
5 brcolinear N x 𝔼 N P 𝔼 N Q 𝔼 N x Colinear P Q x Btwn P Q P Btwn Q x Q Btwn x P
6 1 2 3 4 5 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x Colinear P Q x Btwn P Q P Btwn Q x Q Btwn x P
7 6 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Colinear P Q x Btwn P Q P Btwn Q x Q Btwn x P
8 olc x Btwn P Q Q Btwn P x x Btwn P Q
9 8 orcd x Btwn P Q Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
10 9 a1i N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P Q Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
11 simpl3l N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Q
12 11 necomd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q P
13 12 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x Q P
14 simprl N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x P Btwn Q R
15 simprr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x P Btwn Q x
16 13 14 15 3jca N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x Q P P Btwn Q R P Btwn Q x
17 simpl23 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N R 𝔼 N
18 btwnconn2 N Q 𝔼 N P 𝔼 N R 𝔼 N x 𝔼 N Q P P Btwn Q R P Btwn Q x R Btwn P x x Btwn P R
19 1 4 3 17 2 18 syl122anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q P P Btwn Q R P Btwn Q x R Btwn P x x Btwn P R
20 19 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x Q P P Btwn Q R P Btwn Q x R Btwn P x x Btwn P R
21 16 20 mpd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x R Btwn P x x Btwn P R
22 21 olcd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
23 22 expr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P Btwn Q x Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
24 btwncom N Q 𝔼 N x 𝔼 N P 𝔼 N Q Btwn x P Q Btwn P x
25 1 4 2 3 24 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q Btwn x P Q Btwn P x
26 orc Q Btwn P x Q Btwn P x x Btwn P Q
27 26 orcd Q Btwn P x Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
28 25 27 syl6bi N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q Btwn x P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
29 28 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R Q Btwn x P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
30 10 23 29 3jaod N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P Q P Btwn Q x Q Btwn x P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
31 7 30 sylbid N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Colinear P Q Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
32 olc Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
33 31 32 syl6 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Colinear P Q x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
34 colineartriv1 N P 𝔼 N Q 𝔼 N P Colinear P Q
35 1 3 4 34 syl3anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Colinear P Q
36 breq1 x = P x Colinear P Q P Colinear P Q
37 35 36 syl5ibrcom N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x = P x Colinear P Q
38 37 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x = P x Colinear P Q
39 btwncolinear3 N P 𝔼 N x 𝔼 N Q 𝔼 N Q Btwn P x x Colinear P Q
40 1 3 2 4 39 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q Btwn P x x Colinear P Q
41 btwncolinear5 N P 𝔼 N Q 𝔼 N x 𝔼 N x Btwn P Q x Colinear P Q
42 1 3 4 2 41 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x Btwn P Q x Colinear P Q
43 40 42 jaod N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q Btwn P x x Btwn P Q x Colinear P Q
44 43 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R Q Btwn P x x Btwn P Q x Colinear P Q
45 simpl3r N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P R
46 45 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x P R
47 simprl N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x P Btwn Q R
48 simprr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x R Btwn P x
49 46 47 48 3jca N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x P R P Btwn Q R R Btwn P x
50 btwnouttr N Q 𝔼 N P 𝔼 N R 𝔼 N x 𝔼 N P R P Btwn Q R R Btwn P x P Btwn Q x
51 1 4 3 17 2 50 syl122anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P R P Btwn Q R R Btwn P x P Btwn Q x
52 51 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x P R P Btwn Q R R Btwn P x P Btwn Q x
53 49 52 mpd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x P Btwn Q x
54 btwncolinear4 N Q 𝔼 N x 𝔼 N P 𝔼 N P Btwn Q x x Colinear P Q
55 1 4 2 3 54 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q x x Colinear P Q
56 55 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x P Btwn Q x x Colinear P Q
57 53 56 mpd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x x Colinear P Q
58 57 expr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x x Colinear P Q
59 simprr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R x Btwn P R
60 1 2 3 17 59 btwncomand N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R x Btwn R P
61 simprl N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R P Btwn Q R
62 1 3 4 17 61 btwncomand N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R P Btwn R Q
63 1 17 2 3 4 60 62 btwnexch3and N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R P Btwn x Q
64 btwncolinear2 N x 𝔼 N Q 𝔼 N P 𝔼 N P Btwn x Q x Colinear P Q
65 1 2 4 3 64 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn x Q x Colinear P Q
66 65 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R P Btwn x Q x Colinear P Q
67 63 66 mpd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R x Colinear P Q
68 67 expr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Btwn P R x Colinear P Q
69 58 68 jaod N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R R Btwn P x x Btwn P R x Colinear P Q
70 44 69 jaod N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x Colinear P Q
71 38 70 jaod N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x Colinear P Q
72 33 71 impbid N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Colinear P Q x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
73 pm5.63 x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x = P ¬ x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
74 df-ne x P ¬ x = P
75 74 anbi1i x P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R ¬ x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R
76 andi x P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
77 75 76 bitr3i ¬ x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
78 77 orbi2i x = P ¬ x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x = P x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
79 73 78 bitri x = P Q Btwn P x x Btwn P Q R Btwn P x x Btwn P R x = P x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
80 72 79 bitrdi N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Colinear P Q x = P x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
81 broutsideof2 N P 𝔼 N Q 𝔼 N x 𝔼 N P OutsideOf Q x Q P x P Q Btwn P x x Btwn P Q
82 1 3 4 2 81 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P OutsideOf Q x Q P x P Q Btwn P x x Btwn P Q
83 3simpc Q P x P Q Btwn P x x Btwn P Q x P Q Btwn P x x Btwn P Q
84 simpl3l N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P Q Btwn P x x Btwn P Q P Q
85 84 necomd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P Q Btwn P x x Btwn P Q Q P
86 simprrl N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P Q Btwn P x x Btwn P Q x P
87 simprrr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P Q Btwn P x x Btwn P Q Q Btwn P x x Btwn P Q
88 85 86 87 3jca N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P Q Btwn P x x Btwn P Q Q P x P Q Btwn P x x Btwn P Q
89 88 expr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P Q Btwn P x x Btwn P Q Q P x P Q Btwn P x x Btwn P Q
90 83 89 impbid2 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N Q P x P Q Btwn P x x Btwn P Q x P Q Btwn P x x Btwn P Q
91 82 90 bitrd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P OutsideOf Q x x P Q Btwn P x x Btwn P Q
92 broutsideof2 N P 𝔼 N R 𝔼 N x 𝔼 N P OutsideOf R x R P x P R Btwn P x x Btwn P R
93 1 3 17 2 92 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P OutsideOf R x R P x P R Btwn P x x Btwn P R
94 3simpc R P x P R Btwn P x x Btwn P R x P R Btwn P x x Btwn P R
95 simpl3r N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P R Btwn P x x Btwn P R P R
96 95 necomd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P R Btwn P x x Btwn P R R P
97 simprrl N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P R Btwn P x x Btwn P R x P
98 simprrr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P R Btwn P x x Btwn P R R Btwn P x x Btwn P R
99 96 97 98 3jca N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P R Btwn P x x Btwn P R R P x P R Btwn P x x Btwn P R
100 99 expr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N x P R Btwn P x x Btwn P R R P x P R Btwn P x x Btwn P R
101 94 100 impbid2 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N R P x P R Btwn P x x Btwn P R x P R Btwn P x x Btwn P R
102 93 101 bitrd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P OutsideOf R x x P R Btwn P x x Btwn P R
103 91 102 orbi12d N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P OutsideOf Q x P OutsideOf R x x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
104 103 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R P OutsideOf Q x P OutsideOf R x x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
105 104 orbi2d N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x = P P OutsideOf Q x P OutsideOf R x x = P x P Q Btwn P x x Btwn P Q x P R Btwn P x x Btwn P R
106 80 105 bitr4d N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Colinear P Q x = P P OutsideOf Q x P OutsideOf R x
107 orcom x = P P OutsideOf Q x P OutsideOf R x P OutsideOf Q x P OutsideOf R x x = P
108 or32 P OutsideOf Q x P OutsideOf R x x = P P OutsideOf Q x x = P P OutsideOf R x
109 107 108 bitri x = P P OutsideOf Q x P OutsideOf R x P OutsideOf Q x x = P P OutsideOf R x
110 106 109 bitrdi N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N P Btwn Q R x Colinear P Q P OutsideOf Q x x = P P OutsideOf R x
111 110 an32s N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R x 𝔼 N x Colinear P Q P OutsideOf Q x x = P P OutsideOf R x
112 111 rabbidva N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R x 𝔼 N | x Colinear P Q = x 𝔼 N | P OutsideOf Q x x = P P OutsideOf R x
113 simp1 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R N
114 simp21 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P 𝔼 N
115 simp22 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R Q 𝔼 N
116 simp3l N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Q
117 fvline2 N P 𝔼 N Q 𝔼 N P Q P Line Q = x 𝔼 N | x Colinear P Q
118 113 114 115 116 117 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Line Q = x 𝔼 N | x Colinear P Q
119 118 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R P Line Q = x 𝔼 N | x Colinear P Q
120 fvray N P 𝔼 N Q 𝔼 N P Q P Ray Q = x 𝔼 N | P OutsideOf Q x
121 113 114 115 116 120 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Ray Q = x 𝔼 N | P OutsideOf Q x
122 rabsn P 𝔼 N x 𝔼 N | x = P = P
123 114 122 syl N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R x 𝔼 N | x = P = P
124 123 eqcomd N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P = x 𝔼 N | x = P
125 121 124 uneq12d N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Ray Q P = x 𝔼 N | P OutsideOf Q x x 𝔼 N | x = P
126 simp23 N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R R 𝔼 N
127 simp3r N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P R
128 fvray N P 𝔼 N R 𝔼 N P R P Ray R = x 𝔼 N | P OutsideOf R x
129 113 114 126 127 128 syl13anc N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Ray R = x 𝔼 N | P OutsideOf R x
130 125 129 uneq12d N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Ray Q P P Ray R = x 𝔼 N | P OutsideOf Q x x 𝔼 N | x = P x 𝔼 N | P OutsideOf R x
131 130 adantr N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R P Ray Q P P Ray R = x 𝔼 N | P OutsideOf Q x x 𝔼 N | x = P x 𝔼 N | P OutsideOf R x
132 unrab x 𝔼 N | P OutsideOf Q x x 𝔼 N | x = P = x 𝔼 N | P OutsideOf Q x x = P
133 132 uneq1i x 𝔼 N | P OutsideOf Q x x 𝔼 N | x = P x 𝔼 N | P OutsideOf R x = x 𝔼 N | P OutsideOf Q x x = P x 𝔼 N | P OutsideOf R x
134 unrab x 𝔼 N | P OutsideOf Q x x = P x 𝔼 N | P OutsideOf R x = x 𝔼 N | P OutsideOf Q x x = P P OutsideOf R x
135 133 134 eqtri x 𝔼 N | P OutsideOf Q x x 𝔼 N | x = P x 𝔼 N | P OutsideOf R x = x 𝔼 N | P OutsideOf Q x x = P P OutsideOf R x
136 131 135 eqtrdi N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R P Ray Q P P Ray R = x 𝔼 N | P OutsideOf Q x x = P P OutsideOf R x
137 112 119 136 3eqtr4d N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R P Line Q = P Ray Q P P Ray R
138 137 ex N P 𝔼 N Q 𝔼 N R 𝔼 N P Q P R P Btwn Q R P Line Q = P Ray Q P P Ray R