| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  LinesEE  →  𝐴  ∈  V ) | 
						
							| 2 |  | ovex | ⊢ ( 𝑝 Line 𝑞 )  ∈  V | 
						
							| 3 |  | eleq1 | ⊢ ( 𝐴  =  ( 𝑝 Line 𝑞 )  →  ( 𝐴  ∈  V  ↔  ( 𝑝 Line 𝑞 )  ∈  V ) ) | 
						
							| 4 | 2 3 | mpbiri | ⊢ ( 𝐴  =  ( 𝑝 Line 𝑞 )  →  𝐴  ∈  V ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) )  →  𝐴  ∈  V ) | 
						
							| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) )  →  𝐴  ∈  V ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  →  ( ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) )  →  𝐴  ∈  V ) ) | 
						
							| 8 | 7 | rexlimivv | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) )  →  𝐴  ∈  V ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  LinesEE  ↔  𝐴  ∈  LinesEE ) ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  ( 𝑝 Line 𝑞 )  ↔  𝐴  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 11 | 10 | anbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) ) ) ) | 
						
							| 13 | 12 | 2rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) ) ) ) | 
						
							| 14 |  | df-lines2 | ⊢ LinesEE  =  ran  Line | 
						
							| 15 |  | df-line2 | ⊢ Line  =  { 〈 〈 𝑝 ,  𝑞 〉 ,  𝑥 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) } | 
						
							| 16 | 15 | rneqi | ⊢ ran  Line  =  ran  { 〈 〈 𝑝 ,  𝑞 〉 ,  𝑥 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) } | 
						
							| 17 |  | rnoprab | ⊢ ran  { 〈 〈 𝑝 ,  𝑞 〉 ,  𝑥 〉  ∣  ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) }  =  { 𝑥  ∣  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) } | 
						
							| 18 | 14 16 17 | 3eqtri | ⊢ LinesEE  =  { 𝑥  ∣  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) } | 
						
							| 19 | 18 | eleq2i | ⊢ ( 𝑥  ∈  LinesEE  ↔  𝑥  ∈  { 𝑥  ∣  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) } ) | 
						
							| 20 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) }  ↔  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) ) | 
						
							| 21 |  | df-rex | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  )  ↔  ∃ 𝑛 ( 𝑛  ∈  ℕ  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) ) ) | 
						
							| 22 | 21 | 2exbii | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  )  ↔  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑛  ∈  ℕ  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) ) ) | 
						
							| 23 |  | exrot3 | ⊢ ( ∃ 𝑛 ∃ 𝑝 ∃ 𝑞 ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) )  ↔  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 24 |  | r2ex | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ∃ 𝑛 ∃ 𝑝 ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) | 
						
							| 25 |  | r19.42v | ⊢ ( ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) | 
						
							| 26 |  | df-rex | ⊢ ( ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) )  ↔  ∃ 𝑞 ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 27 | 25 26 | bitr3i | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) )  ↔  ∃ 𝑞 ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 28 | 27 | 2exbii | ⊢ ( ∃ 𝑛 ∃ 𝑝 ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) )  ↔  ∃ 𝑛 ∃ 𝑝 ∃ 𝑞 ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 29 | 24 28 | bitri | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ∃ 𝑛 ∃ 𝑝 ∃ 𝑞 ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 30 |  | anass | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) )  ↔  ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 31 |  | anass | ⊢ ( ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) | 
						
							| 32 |  | simplrl | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  →  𝑛  ∈  ℕ ) | 
						
							| 33 |  | simplrr | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  →  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 34 |  | simpll | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  →  𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  →  𝑝  ≠  𝑞 ) | 
						
							| 36 | 33 34 35 | 3jca | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  →  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) ) | 
						
							| 37 | 32 36 | jca | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  →  ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) ) ) | 
						
							| 38 |  | simpr2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 40 |  | simpr1 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) | 
						
							| 41 | 38 39 40 | jca32 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) ) ) | 
						
							| 42 |  | simpr3 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  𝑝  ≠  𝑞 ) | 
						
							| 43 | 41 42 | jca | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 ) ) | 
						
							| 44 | 37 43 | impbii | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  ↔  ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) ) ) | 
						
							| 45 | 44 | anbi1i | ⊢ ( ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 46 | 31 45 | bitr3i | ⊢ ( ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 47 | 30 46 | bitr3i | ⊢ ( ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 48 |  | fvline | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  ( 𝑝 Line 𝑞 )  =  { 𝑥  ∣  𝑥  Colinear  〈 𝑝 ,  𝑞 〉 } ) | 
						
							| 49 |  | opex | ⊢ 〈 𝑝 ,  𝑞 〉  ∈  V | 
						
							| 50 |  | dfec2 | ⊢ ( 〈 𝑝 ,  𝑞 〉  ∈  V  →  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear   =  { 𝑥  ∣  〈 𝑝 ,  𝑞 〉 ◡  Colinear  𝑥 } ) | 
						
							| 51 | 49 50 | ax-mp | ⊢ [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear   =  { 𝑥  ∣  〈 𝑝 ,  𝑞 〉 ◡  Colinear  𝑥 } | 
						
							| 52 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 53 | 49 52 | brcnv | ⊢ ( 〈 𝑝 ,  𝑞 〉 ◡  Colinear  𝑥  ↔  𝑥  Colinear  〈 𝑝 ,  𝑞 〉 ) | 
						
							| 54 | 53 | abbii | ⊢ { 𝑥  ∣  〈 𝑝 ,  𝑞 〉 ◡  Colinear  𝑥 }  =  { 𝑥  ∣  𝑥  Colinear  〈 𝑝 ,  𝑞 〉 } | 
						
							| 55 | 51 54 | eqtri | ⊢ [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear   =  { 𝑥  ∣  𝑥  Colinear  〈 𝑝 ,  𝑞 〉 } | 
						
							| 56 | 48 55 | eqtr4di | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  ( 𝑝 Line 𝑞 )  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) | 
						
							| 57 | 56 | eqeq2d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  →  ( 𝑥  =  ( 𝑝 Line 𝑞 )  ↔  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) ) | 
						
							| 58 | 57 | pm5.32i | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) ) | 
						
							| 59 |  | anass | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 ) )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  )  ↔  ( 𝑛  ∈  ℕ  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) ) ) | 
						
							| 60 | 47 58 59 | 3bitrri | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) )  ↔  ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 61 | 60 | 3exbii | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑛  ∈  ℕ  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) )  ↔  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  ( ( 𝑛  ∈  ℕ  ∧  𝑝  ∈  ( 𝔼 ‘ 𝑛 ) )  ∧  ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) ) ) | 
						
							| 62 | 23 29 61 | 3bitr4ri | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑛  ∈  ℕ  ∧  ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) )  ↔  ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 63 | 22 62 | bitri | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  )  ↔  ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 64 | 20 63 | bitri | ⊢ ( 𝑥  ∈  { 𝑥  ∣  ∃ 𝑝 ∃ 𝑞 ∃ 𝑛  ∈  ℕ ( ( 𝑝  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑞  ∈  ( 𝔼 ‘ 𝑛 )  ∧  𝑝  ≠  𝑞 )  ∧  𝑥  =  [ 〈 𝑝 ,  𝑞 〉 ] ◡  Colinear  ) }  ↔  ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 65 | 19 64 | bitri | ⊢ ( 𝑥  ∈  LinesEE  ↔  ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝑥  =  ( 𝑝 Line 𝑞 ) ) ) | 
						
							| 66 | 9 13 65 | vtoclbg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  LinesEE  ↔  ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) ) ) ) | 
						
							| 67 | 1 8 66 | pm5.21nii | ⊢ ( 𝐴  ∈  LinesEE  ↔  ∃ 𝑛  ∈  ℕ ∃ 𝑝  ∈  ( 𝔼 ‘ 𝑛 ) ∃ 𝑞  ∈  ( 𝔼 ‘ 𝑛 ) ( 𝑝  ≠  𝑞  ∧  𝐴  =  ( 𝑝 Line 𝑞 ) ) ) |