| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ LinesEE → 𝐴 ∈ V ) |
| 2 |
|
ovex |
⊢ ( 𝑝 Line 𝑞 ) ∈ V |
| 3 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑝 Line 𝑞 ) → ( 𝐴 ∈ V ↔ ( 𝑝 Line 𝑞 ) ∈ V ) ) |
| 4 |
2 3
|
mpbiri |
⊢ ( 𝐴 = ( 𝑝 Line 𝑞 ) → 𝐴 ∈ V ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) → 𝐴 ∈ V ) |
| 6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) → 𝐴 ∈ V ) |
| 7 |
6
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) → ( ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) → 𝐴 ∈ V ) ) |
| 8 |
7
|
rexlimivv |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) → 𝐴 ∈ V ) |
| 9 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ LinesEE ↔ 𝐴 ∈ LinesEE ) ) |
| 10 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ( 𝑝 Line 𝑞 ) ↔ 𝐴 = ( 𝑝 Line 𝑞 ) ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) ) ) |
| 13 |
12
|
2rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) ) ) |
| 14 |
|
df-lines2 |
⊢ LinesEE = ran Line |
| 15 |
|
df-line2 |
⊢ Line = { 〈 〈 𝑝 , 𝑞 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } |
| 16 |
15
|
rneqi |
⊢ ran Line = ran { 〈 〈 𝑝 , 𝑞 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } |
| 17 |
|
rnoprab |
⊢ ran { 〈 〈 𝑝 , 𝑞 〉 , 𝑥 〉 ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } = { 𝑥 ∣ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } |
| 18 |
14 16 17
|
3eqtri |
⊢ LinesEE = { 𝑥 ∣ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } |
| 19 |
18
|
eleq2i |
⊢ ( 𝑥 ∈ LinesEE ↔ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } ) |
| 20 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } ↔ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) |
| 21 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ↔ ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) ) |
| 22 |
21
|
2exbii |
⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ↔ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) ) |
| 23 |
|
exrot3 |
⊢ ( ∃ 𝑛 ∃ 𝑝 ∃ 𝑞 ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ↔ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 24 |
|
r2ex |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ∃ 𝑛 ∃ 𝑝 ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) |
| 25 |
|
r19.42v |
⊢ ( ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) |
| 26 |
|
df-rex |
⊢ ( ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ↔ ∃ 𝑞 ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 27 |
25 26
|
bitr3i |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ↔ ∃ 𝑞 ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 28 |
27
|
2exbii |
⊢ ( ∃ 𝑛 ∃ 𝑝 ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ↔ ∃ 𝑛 ∃ 𝑝 ∃ 𝑞 ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 29 |
24 28
|
bitri |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ∃ 𝑛 ∃ 𝑝 ∃ 𝑞 ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 30 |
|
anass |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ↔ ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 31 |
|
anass |
⊢ ( ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) |
| 32 |
|
simplrl |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) → 𝑛 ∈ ℕ ) |
| 33 |
|
simplrr |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) → 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) |
| 34 |
|
simpll |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) → 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) → 𝑝 ≠ 𝑞 ) |
| 36 |
33 34 35
|
3jca |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) → ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) |
| 37 |
32 36
|
jca |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) → ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ) |
| 38 |
|
simpr2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ) |
| 39 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → 𝑛 ∈ ℕ ) |
| 40 |
|
simpr1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) |
| 41 |
38 39 40
|
jca32 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ) |
| 42 |
|
simpr3 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → 𝑝 ≠ 𝑞 ) |
| 43 |
41 42
|
jca |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) ) |
| 44 |
37 43
|
impbii |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) ↔ ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ) |
| 45 |
44
|
anbi1i |
⊢ ( ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) |
| 46 |
31 45
|
bitr3i |
⊢ ( ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) |
| 47 |
30 46
|
bitr3i |
⊢ ( ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) |
| 48 |
|
fvline |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → ( 𝑝 Line 𝑞 ) = { 𝑥 ∣ 𝑥 Colinear 〈 𝑝 , 𝑞 〉 } ) |
| 49 |
|
opex |
⊢ 〈 𝑝 , 𝑞 〉 ∈ V |
| 50 |
|
dfec2 |
⊢ ( 〈 𝑝 , 𝑞 〉 ∈ V → [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear = { 𝑥 ∣ 〈 𝑝 , 𝑞 〉 ◡ Colinear 𝑥 } ) |
| 51 |
49 50
|
ax-mp |
⊢ [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear = { 𝑥 ∣ 〈 𝑝 , 𝑞 〉 ◡ Colinear 𝑥 } |
| 52 |
|
vex |
⊢ 𝑥 ∈ V |
| 53 |
49 52
|
brcnv |
⊢ ( 〈 𝑝 , 𝑞 〉 ◡ Colinear 𝑥 ↔ 𝑥 Colinear 〈 𝑝 , 𝑞 〉 ) |
| 54 |
53
|
abbii |
⊢ { 𝑥 ∣ 〈 𝑝 , 𝑞 〉 ◡ Colinear 𝑥 } = { 𝑥 ∣ 𝑥 Colinear 〈 𝑝 , 𝑞 〉 } |
| 55 |
51 54
|
eqtri |
⊢ [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear = { 𝑥 ∣ 𝑥 Colinear 〈 𝑝 , 𝑞 〉 } |
| 56 |
48 55
|
eqtr4di |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → ( 𝑝 Line 𝑞 ) = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) |
| 57 |
56
|
eqeq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) → ( 𝑥 = ( 𝑝 Line 𝑞 ) ↔ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) |
| 58 |
57
|
pm5.32i |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) |
| 59 |
|
anass |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ↔ ( 𝑛 ∈ ℕ ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) ) |
| 60 |
47 58 59
|
3bitrri |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) ↔ ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 61 |
60
|
3exbii |
⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) ↔ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) ) ) |
| 62 |
23 29 61
|
3bitr4ri |
⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) |
| 63 |
22 62
|
bitri |
⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) |
| 64 |
20 63
|
bitri |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑝 ∃ 𝑞 ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑝 ≠ 𝑞 ) ∧ 𝑥 = [ 〈 𝑝 , 𝑞 〉 ] ◡ Colinear ) } ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) |
| 65 |
19 64
|
bitri |
⊢ ( 𝑥 ∈ LinesEE ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝑥 = ( 𝑝 Line 𝑞 ) ) ) |
| 66 |
9 13 65
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ LinesEE ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) ) ) |
| 67 |
1 8 66
|
pm5.21nii |
⊢ ( 𝐴 ∈ LinesEE ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 ≠ 𝑞 ∧ 𝐴 = ( 𝑝 Line 𝑞 ) ) ) |