Step |
Hyp |
Ref |
Expression |
1 |
|
dfoprab2 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } |
2 |
1
|
rneqi |
⊢ ran { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = ran { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } |
3 |
|
rnopab |
⊢ ran { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } = { 𝑧 ∣ ∃ 𝑤 ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } |
4 |
|
exrot3 |
⊢ ( ∃ 𝑤 ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑤 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
5 |
|
opex |
⊢ 〈 𝑥 , 𝑦 〉 ∈ V |
6 |
5
|
isseti |
⊢ ∃ 𝑤 𝑤 = 〈 𝑥 , 𝑦 〉 |
7 |
|
19.41v |
⊢ ( ∃ 𝑤 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( ∃ 𝑤 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
8 |
6 7
|
mpbiran |
⊢ ( ∃ 𝑤 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜑 ) |
9 |
8
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑤 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) |
10 |
4 9
|
bitri |
⊢ ( ∃ 𝑤 ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) |
11 |
10
|
abbii |
⊢ { 𝑧 ∣ ∃ 𝑤 ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 𝜑 } |
12 |
2 3 11
|
3eqtri |
⊢ ran { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 𝜑 } |