| Step | Hyp | Ref | Expression | 
						
							| 1 |  | necom | ⊢ ( 𝑃  ≠  𝑄  ↔  𝑄  ≠  𝑃 ) | 
						
							| 2 | 1 | 3anbi3i | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ↔  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) ) | 
						
							| 3 |  | 3ancoma | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 )  ↔  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) ) | 
						
							| 4 | 2 3 | bitri | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ↔  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) ) | 
						
							| 5 |  | linerflx1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) )  →  𝑄  ∈  ( 𝑄 Line 𝑃 ) ) | 
						
							| 6 | 4 5 | sylan2b | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑄  ∈  ( 𝑄 Line 𝑃 ) ) | 
						
							| 7 |  | linecom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ( 𝑃 Line 𝑄 )  =  ( 𝑄 Line 𝑃 ) ) | 
						
							| 8 | 6 7 | eleqtrrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑄  ∈  ( 𝑃 Line 𝑄 ) ) |