Metamath Proof Explorer


Theorem linecom

Description: Commutativity law for lines. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linecom ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ( 𝑃 Line 𝑄 ) = ( 𝑄 Line 𝑃 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ )
2 simp3 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) )
3 simp21 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) )
4 simp22 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) )
5 colinearperm1 ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ ↔ 𝑥 Colinear ⟨ 𝑄 , 𝑃 ⟩ ) )
6 1 2 3 4 5 syl13anc ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ ↔ 𝑥 Colinear ⟨ 𝑄 , 𝑃 ⟩ ) )
7 6 3expa ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ ↔ 𝑥 Colinear ⟨ 𝑄 , 𝑃 ⟩ ) )
8 7 rabbidva ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑄 , 𝑃 ⟩ } )
9 fvline2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ( 𝑃 Line 𝑄 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ } )
10 necom ( 𝑃𝑄𝑄𝑃 )
11 10 3anbi3i ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄𝑃 ) )
12 3ancoma ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄𝑃 ) ↔ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄𝑃 ) )
13 11 12 bitri ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ↔ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄𝑃 ) )
14 fvline2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄𝑃 ) ) → ( 𝑄 Line 𝑃 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑄 , 𝑃 ⟩ } )
15 13 14 sylan2b ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ( 𝑄 Line 𝑃 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑄 , 𝑃 ⟩ } )
16 8 9 15 3eqtr4d ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ( 𝑃 Line 𝑄 ) = ( 𝑄 Line 𝑃 ) )