| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | simp3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  →  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 3 |  | simp21 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | simp22 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  →  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | colinearperm1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝑥  Colinear  〈 𝑃 ,  𝑄 〉  ↔  𝑥  Colinear  〈 𝑄 ,  𝑃 〉 ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝑥  Colinear  〈 𝑃 ,  𝑄 〉  ↔  𝑥  Colinear  〈 𝑄 ,  𝑃 〉 ) ) | 
						
							| 7 | 6 | 3expa | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  ∧  𝑥  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝑥  Colinear  〈 𝑃 ,  𝑄 〉  ↔  𝑥  Colinear  〈 𝑄 ,  𝑃 〉 ) ) | 
						
							| 8 | 7 | rabbidva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑃 ,  𝑄 〉 }  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑄 ,  𝑃 〉 } ) | 
						
							| 9 |  | fvline2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ( 𝑃 Line 𝑄 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑃 ,  𝑄 〉 } ) | 
						
							| 10 |  | necom | ⊢ ( 𝑃  ≠  𝑄  ↔  𝑄  ≠  𝑃 ) | 
						
							| 11 | 10 | 3anbi3i | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ↔  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) ) | 
						
							| 12 |  | 3ancoma | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 )  ↔  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) ) | 
						
							| 13 | 11 12 | bitri | ⊢ ( ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 )  ↔  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) ) | 
						
							| 14 |  | fvline2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ≠  𝑃 ) )  →  ( 𝑄 Line 𝑃 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑄 ,  𝑃 〉 } ) | 
						
							| 15 | 13 14 | sylan2b | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ( 𝑄 Line 𝑃 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑄 ,  𝑃 〉 } ) | 
						
							| 16 | 8 9 15 | 3eqtr4d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ( 𝑃 Line 𝑄 )  =  ( 𝑄 Line 𝑃 ) ) |