Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
2 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
simp21 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
simp22 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
colinearperm1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑄 , 𝑃 〉 ) ) |
6 |
1 2 3 4 5
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑄 , 𝑃 〉 ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑥 Colinear 〈 𝑄 , 𝑃 〉 ) ) |
8 |
7
|
rabbidva |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑄 , 𝑃 〉 } ) |
9 |
|
fvline2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ( 𝑃 Line 𝑄 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ) |
10 |
|
necom |
⊢ ( 𝑃 ≠ 𝑄 ↔ 𝑄 ≠ 𝑃 ) |
11 |
10
|
3anbi3i |
⊢ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ≠ 𝑃 ) ) |
12 |
|
3ancoma |
⊢ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ≠ 𝑃 ) ↔ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ≠ 𝑃 ) ) |
13 |
11 12
|
bitri |
⊢ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ↔ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ≠ 𝑃 ) ) |
14 |
|
fvline2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ≠ 𝑃 ) ) → ( 𝑄 Line 𝑃 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑄 , 𝑃 〉 } ) |
15 |
13 14
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ( 𝑄 Line 𝑃 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑄 , 𝑃 〉 } ) |
16 |
8 9 15
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ( 𝑃 Line 𝑄 ) = ( 𝑄 Line 𝑃 ) ) |