Metamath Proof Explorer


Theorem linecom

Description: Commutativity law for lines. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linecom NP𝔼NQ𝔼NPQPLineQ=QLineP

Proof

Step Hyp Ref Expression
1 simp1 NP𝔼NQ𝔼NPQx𝔼NN
2 simp3 NP𝔼NQ𝔼NPQx𝔼Nx𝔼N
3 simp21 NP𝔼NQ𝔼NPQx𝔼NP𝔼N
4 simp22 NP𝔼NQ𝔼NPQx𝔼NQ𝔼N
5 colinearperm1 Nx𝔼NP𝔼NQ𝔼NxColinearPQxColinearQP
6 1 2 3 4 5 syl13anc NP𝔼NQ𝔼NPQx𝔼NxColinearPQxColinearQP
7 6 3expa NP𝔼NQ𝔼NPQx𝔼NxColinearPQxColinearQP
8 7 rabbidva NP𝔼NQ𝔼NPQx𝔼N|xColinearPQ=x𝔼N|xColinearQP
9 fvline2 NP𝔼NQ𝔼NPQPLineQ=x𝔼N|xColinearPQ
10 necom PQQP
11 10 3anbi3i P𝔼NQ𝔼NPQP𝔼NQ𝔼NQP
12 3ancoma P𝔼NQ𝔼NQPQ𝔼NP𝔼NQP
13 11 12 bitri P𝔼NQ𝔼NPQQ𝔼NP𝔼NQP
14 fvline2 NQ𝔼NP𝔼NQPQLineP=x𝔼N|xColinearQP
15 13 14 sylan2b NP𝔼NQ𝔼NPQQLineP=x𝔼N|xColinearQP
16 8 9 15 3eqtr4d NP𝔼NQ𝔼NPQPLineQ=QLineP