Metamath Proof Explorer


Theorem locfinnei

Description: A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypothesis locfinnei.1 𝑋 = 𝐽
Assertion locfinnei ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑃𝑋 ) → ∃ 𝑛𝐽 ( 𝑃𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 locfinnei.1 𝑋 = 𝐽
2 eqid 𝐴 = 𝐴
3 1 2 islocfin ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝐴 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
4 3 simp3bi ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
5 eleq1 ( 𝑥 = 𝑃 → ( 𝑥𝑛𝑃𝑛 ) )
6 5 anbi1d ( 𝑥 = 𝑃 → ( ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑃𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
7 6 rexbidv ( 𝑥 = 𝑃 → ( ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∃ 𝑛𝐽 ( 𝑃𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
8 7 rspccva ( ( ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ∧ 𝑃𝑋 ) → ∃ 𝑛𝐽 ( 𝑃𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
9 4 8 sylan ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑃𝑋 ) → ∃ 𝑛𝐽 ( 𝑃𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )