| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 2 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
| 3 |
1 2
|
locfinbas |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ∪ 𝐽 = ∪ 𝐴 ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ( 𝑥 ∈ ∪ 𝐽 ↔ 𝑥 ∈ ∪ 𝐴 ) ) |
| 5 |
4
|
biimpar |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 6 |
1
|
locfinnei |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 7 |
5 6
|
syldan |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 8 |
|
inelcm |
⊢ ( ( 𝑥 ∈ 𝑠 ∧ 𝑥 ∈ 𝑛 ) → ( 𝑠 ∩ 𝑛 ) ≠ ∅ ) |
| 9 |
8
|
expcom |
⊢ ( 𝑥 ∈ 𝑛 → ( 𝑥 ∈ 𝑠 → ( 𝑠 ∩ 𝑛 ) ≠ ∅ ) ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑥 ∈ 𝑛 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑠 → ( 𝑠 ∩ 𝑛 ) ≠ ∅ ) ) |
| 11 |
10
|
ss2rabdv |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑥 ∈ 𝑛 ) → { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ⊆ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ) |
| 12 |
|
ssfi |
⊢ ( ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ∧ { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ⊆ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ) → { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) |
| 13 |
12
|
expcom |
⊢ ( { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ⊆ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } → ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin → { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) |
| 14 |
11 13
|
syl |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) ∧ 𝑥 ∈ 𝑛 ) → ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin → { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) |
| 15 |
14
|
expimpd |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) → ( ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) |
| 16 |
15
|
rexlimdvw |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) → ( ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) |
| 17 |
7 16
|
mpd |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐴 ) → { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) |
| 18 |
17
|
ralrimiva |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ∀ 𝑥 ∈ ∪ 𝐴 { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) |
| 19 |
2
|
isptfin |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ( 𝐴 ∈ PtFin ↔ ∀ 𝑥 ∈ ∪ 𝐴 { 𝑠 ∈ 𝐴 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) |
| 20 |
18 19
|
mpbird |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐴 ∈ PtFin ) |