Metamath Proof Explorer


Theorem lfinpfin

Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion lfinpfin ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐴 ∈ PtFin )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 eqid 𝐴 = 𝐴
3 1 2 locfinbas ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 = 𝐴 )
4 3 eleq2d ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ( 𝑥 𝐽𝑥 𝐴 ) )
5 4 biimpar ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) → 𝑥 𝐽 )
6 1 locfinnei ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐽 ) → ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
7 5 6 syldan ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) → ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
8 inelcm ( ( 𝑥𝑠𝑥𝑛 ) → ( 𝑠𝑛 ) ≠ ∅ )
9 8 expcom ( 𝑥𝑛 → ( 𝑥𝑠 → ( 𝑠𝑛 ) ≠ ∅ ) )
10 9 ad2antlr ( ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) ∧ 𝑥𝑛 ) ∧ 𝑠𝐴 ) → ( 𝑥𝑠 → ( 𝑠𝑛 ) ≠ ∅ ) )
11 10 ss2rabdv ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) ∧ 𝑥𝑛 ) → { 𝑠𝐴𝑥𝑠 } ⊆ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } )
12 ssfi ( ( { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ∧ { 𝑠𝐴𝑥𝑠 } ⊆ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ) → { 𝑠𝐴𝑥𝑠 } ∈ Fin )
13 12 expcom ( { 𝑠𝐴𝑥𝑠 } ⊆ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } → ( { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin → { 𝑠𝐴𝑥𝑠 } ∈ Fin ) )
14 11 13 syl ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) ∧ 𝑥𝑛 ) → ( { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin → { 𝑠𝐴𝑥𝑠 } ∈ Fin ) )
15 14 expimpd ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) → ( ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠𝐴𝑥𝑠 } ∈ Fin ) )
16 15 rexlimdvw ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) → ( ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠𝐴𝑥𝑠 } ∈ Fin ) )
17 7 16 mpd ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 𝐴 ) → { 𝑠𝐴𝑥𝑠 } ∈ Fin )
18 17 ralrimiva ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ∀ 𝑥 𝐴 { 𝑠𝐴𝑥𝑠 } ∈ Fin )
19 2 isptfin ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ( 𝐴 ∈ PtFin ↔ ∀ 𝑥 𝐴 { 𝑠𝐴𝑥𝑠 } ∈ Fin ) )
20 18 19 mpbird ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐴 ∈ PtFin )