Step |
Hyp |
Ref |
Expression |
1 |
|
locfintop |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top ) |
2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → 𝐽 ∈ Top ) |
3 |
|
ssequn2 |
⊢ ( ∪ 𝐵 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∪ ∪ 𝐵 ) = ∪ 𝐽 ) |
4 |
3
|
biimpi |
⊢ ( ∪ 𝐵 ⊆ ∪ 𝐽 → ( ∪ 𝐽 ∪ ∪ 𝐵 ) = ∪ 𝐽 ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ( ∪ 𝐽 ∪ ∪ 𝐵 ) = ∪ 𝐽 ) |
6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
7 |
|
eqid |
⊢ ∪ 𝐴 = ∪ 𝐴 |
8 |
6 7
|
locfinbas |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → ∪ 𝐽 = ∪ 𝐴 ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ∪ 𝐽 = ∪ 𝐴 ) |
10 |
9
|
uneq1d |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ( ∪ 𝐽 ∪ ∪ 𝐵 ) = ( ∪ 𝐴 ∪ ∪ 𝐵 ) ) |
11 |
5 10
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ∪ 𝐽 = ( ∪ 𝐴 ∪ ∪ 𝐵 ) ) |
12 |
|
uniun |
⊢ ∪ ( 𝐴 ∪ 𝐵 ) = ( ∪ 𝐴 ∪ ∪ 𝐵 ) |
13 |
11 12
|
eqtr4di |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ∪ 𝐽 = ∪ ( 𝐴 ∪ 𝐵 ) ) |
14 |
6
|
locfinnei |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
15 |
14
|
ad4ant14 |
⊢ ( ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
17 |
|
rabfi |
⊢ ( 𝐵 ∈ Fin → { 𝑠 ∈ 𝐵 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠 ∈ 𝐵 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
19 |
|
rabun2 |
⊢ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } = ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∪ { 𝑠 ∈ 𝐵 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ) |
20 |
|
unfi |
⊢ ( ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ∧ { 𝑠 ∈ 𝐵 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∪ { 𝑠 ∈ 𝐵 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ) ∈ Fin ) |
21 |
19 20
|
eqeltrid |
⊢ ( ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ∧ { 𝑠 ∈ 𝐵 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
22 |
16 18 21
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
23 |
22
|
ex |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) → ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin → { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin → { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
25 |
24
|
anim2d |
⊢ ( ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
26 |
25
|
reximdv |
⊢ ( ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
27 |
15 26
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
28 |
27
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
29 |
2 13 28
|
3jca |
⊢ ( ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ) ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ( 𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ ( 𝐴 ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
30 |
29
|
3impa |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ( 𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ ( 𝐴 ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
31 |
|
eqid |
⊢ ∪ ( 𝐴 ∪ 𝐵 ) = ∪ ( 𝐴 ∪ 𝐵 ) |
32 |
6 31
|
islocfin |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ ( 𝐴 ∪ 𝐵 ) ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ ( 𝐴 ∪ 𝐵 ) ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
33 |
30 32
|
sylibr |
⊢ ( ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝐵 ∈ Fin ∧ ∪ 𝐵 ⊆ ∪ 𝐽 ) → ( 𝐴 ∪ 𝐵 ) ∈ ( LocFin ‘ 𝐽 ) ) |