Step |
Hyp |
Ref |
Expression |
1 |
|
locfincmp.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
locfincmp.2 |
⊢ 𝑌 = ∪ 𝐶 |
3 |
1
|
locfinnei |
⊢ ( ( 𝐶 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) ) |
4 |
3
|
ralrimiva |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝐽 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) ) |
5 |
1
|
cmpcov2 |
⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑐 ∧ ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑐 ∧ ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) ) |
7 |
|
elfpw |
⊢ ( 𝑐 ∈ ( 𝒫 𝐽 ∩ Fin ) ↔ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) |
8 |
|
simplrr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) → 𝑐 ∈ Fin ) |
9 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐶 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ∅ ) ) |
10 |
|
ineq1 |
⊢ ( 𝑠 = 𝑥 → ( 𝑠 ∩ 𝑜 ) = ( 𝑥 ∩ 𝑜 ) ) |
11 |
10
|
neeq1d |
⊢ ( 𝑠 = 𝑥 → ( ( 𝑠 ∩ 𝑜 ) ≠ ∅ ↔ ( 𝑥 ∩ 𝑜 ) ≠ ∅ ) ) |
12 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜 ) ) → 𝑥 ∈ 𝐶 ) |
13 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜 ) ) → 𝑦 ∈ 𝑥 ) |
14 |
|
simprr |
⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜 ) ) → 𝑦 ∈ 𝑜 ) |
15 |
|
inelcm |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ 𝑜 ) → ( 𝑥 ∩ 𝑜 ) ≠ ∅ ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜 ) ) → ( 𝑥 ∩ 𝑜 ) ≠ ∅ ) |
17 |
11 12 16
|
elrabd |
⊢ ( ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑜 ∈ 𝑐 ∧ 𝑦 ∈ 𝑜 ) ) → 𝑥 ∈ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) |
18 |
|
elunii |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶 ) → 𝑦 ∈ ∪ 𝐶 ) |
19 |
18 2
|
eleqtrrdi |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶 ) → 𝑦 ∈ 𝑌 ) |
20 |
19
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑌 ) |
21 |
20
|
adantl |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ 𝑌 ) |
22 |
1 2
|
locfinbas |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝐽 ) → 𝑋 = 𝑌 ) |
23 |
22
|
adantl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) → 𝑋 = 𝑌 ) |
24 |
23
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑋 = 𝑌 ) |
25 |
21 24
|
eleqtrrd |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ 𝑋 ) |
26 |
|
simplr |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑋 = ∪ 𝑐 ) |
27 |
25 26
|
eleqtrd |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ ∪ 𝑐 ) |
28 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝑐 ↔ ∃ 𝑜 ∈ 𝑐 𝑦 ∈ 𝑜 ) |
29 |
27 28
|
sylib |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑜 ∈ 𝑐 𝑦 ∈ 𝑜 ) |
30 |
17 29
|
reximddv |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑜 ∈ 𝑐 𝑥 ∈ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) |
31 |
30
|
expr |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑜 ∈ 𝑐 𝑥 ∈ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) ) |
32 |
31
|
exlimdv |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑥 ∈ 𝐶 ) → ( ∃ 𝑦 𝑦 ∈ 𝑥 → ∃ 𝑜 ∈ 𝑐 𝑥 ∈ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) ) |
33 |
|
n0 |
⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
34 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ↔ ∃ 𝑜 ∈ 𝑐 𝑥 ∈ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) |
35 |
32 33 34
|
3imtr4g |
⊢ ( ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ≠ ∅ → 𝑥 ∈ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) ) |
36 |
35
|
expimpd |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ≠ ∅ ) → 𝑥 ∈ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) ) |
37 |
9 36
|
syl5bi |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑥 ∈ ( 𝐶 ∖ { ∅ } ) → 𝑥 ∈ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) ) |
38 |
37
|
ssrdv |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) → ( 𝐶 ∖ { ∅ } ) ⊆ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) |
39 |
|
iunfi |
⊢ ( ( 𝑐 ∈ Fin ∧ ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) → ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) |
40 |
39
|
ex |
⊢ ( 𝑐 ∈ Fin → ( ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin → ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) ) |
41 |
|
ssfi |
⊢ ( ( ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ∧ ( 𝐶 ∖ { ∅ } ) ⊆ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) |
42 |
41
|
expcom |
⊢ ( ( 𝐶 ∖ { ∅ } ) ⊆ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } → ( ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) ) |
43 |
40 42
|
sylan9 |
⊢ ( ( 𝑐 ∈ Fin ∧ ( 𝐶 ∖ { ∅ } ) ⊆ ∪ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ) → ( ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) ) |
44 |
8 38 43
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) ∧ 𝑋 = ∪ 𝑐 ) → ( ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) ) |
45 |
44
|
expimpd |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ ( 𝑐 ⊆ 𝐽 ∧ 𝑐 ∈ Fin ) ) → ( ( 𝑋 = ∪ 𝑐 ∧ ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) ) |
46 |
7 45
|
sylan2b |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ∧ 𝑐 ∈ ( 𝒫 𝐽 ∩ Fin ) ) → ( ( 𝑋 = ∪ 𝑐 ∧ ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) ) |
47 |
46
|
rexlimdva |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) → ( ∃ 𝑐 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑐 ∧ ∀ 𝑜 ∈ 𝑐 { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑜 ) ≠ ∅ } ∈ Fin ) → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) ) |
48 |
6 47
|
mpd |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝐶 ∖ { ∅ } ) ∈ Fin ) |
49 |
|
snfi |
⊢ { ∅ } ∈ Fin |
50 |
|
unfi |
⊢ ( ( ( 𝐶 ∖ { ∅ } ) ∈ Fin ∧ { ∅ } ∈ Fin ) → ( ( 𝐶 ∖ { ∅ } ) ∪ { ∅ } ) ∈ Fin ) |
51 |
48 49 50
|
sylancl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) → ( ( 𝐶 ∖ { ∅ } ) ∪ { ∅ } ) ∈ Fin ) |
52 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ { ∅ } ) |
53 |
|
undif1 |
⊢ ( ( 𝐶 ∖ { ∅ } ) ∪ { ∅ } ) = ( 𝐶 ∪ { ∅ } ) |
54 |
52 53
|
sseqtrri |
⊢ 𝐶 ⊆ ( ( 𝐶 ∖ { ∅ } ) ∪ { ∅ } ) |
55 |
|
ssfi |
⊢ ( ( ( ( 𝐶 ∖ { ∅ } ) ∪ { ∅ } ) ∈ Fin ∧ 𝐶 ⊆ ( ( 𝐶 ∖ { ∅ } ) ∪ { ∅ } ) ) → 𝐶 ∈ Fin ) |
56 |
51 54 55
|
sylancl |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) → 𝐶 ∈ Fin ) |
57 |
56 23
|
jca |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝐶 ∈ Fin ∧ 𝑋 = 𝑌 ) ) |
58 |
57
|
ex |
⊢ ( 𝐽 ∈ Comp → ( 𝐶 ∈ ( LocFin ‘ 𝐽 ) → ( 𝐶 ∈ Fin ∧ 𝑋 = 𝑌 ) ) ) |
59 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
60 |
1 2
|
finlocfin |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐶 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) |
61 |
60
|
3expib |
⊢ ( 𝐽 ∈ Top → ( ( 𝐶 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ) |
62 |
59 61
|
syl |
⊢ ( 𝐽 ∈ Comp → ( ( 𝐶 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐶 ∈ ( LocFin ‘ 𝐽 ) ) ) |
63 |
58 62
|
impbid |
⊢ ( 𝐽 ∈ Comp → ( 𝐶 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐶 ∈ Fin ∧ 𝑋 = 𝑌 ) ) ) |