| Step |
Hyp |
Ref |
Expression |
| 1 |
|
locfincmp.1 |
|
| 2 |
|
locfincmp.2 |
|
| 3 |
1
|
locfinnei |
|
| 4 |
3
|
ralrimiva |
|
| 5 |
1
|
cmpcov2 |
|
| 6 |
4 5
|
sylan2 |
|
| 7 |
|
elfpw |
|
| 8 |
|
simplrr |
|
| 9 |
|
eldifsn |
|
| 10 |
|
ineq1 |
|
| 11 |
10
|
neeq1d |
|
| 12 |
|
simplrl |
|
| 13 |
|
simplrr |
|
| 14 |
|
simprr |
|
| 15 |
|
inelcm |
|
| 16 |
13 14 15
|
syl2anc |
|
| 17 |
11 12 16
|
elrabd |
|
| 18 |
|
elunii |
|
| 19 |
18 2
|
eleqtrrdi |
|
| 20 |
19
|
ancoms |
|
| 21 |
20
|
adantl |
|
| 22 |
1 2
|
locfinbas |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
ad3antrrr |
|
| 25 |
21 24
|
eleqtrrd |
|
| 26 |
|
simplr |
|
| 27 |
25 26
|
eleqtrd |
|
| 28 |
|
eluni2 |
|
| 29 |
27 28
|
sylib |
|
| 30 |
17 29
|
reximddv |
|
| 31 |
30
|
expr |
|
| 32 |
31
|
exlimdv |
|
| 33 |
|
n0 |
|
| 34 |
|
eliun |
|
| 35 |
32 33 34
|
3imtr4g |
|
| 36 |
35
|
expimpd |
|
| 37 |
9 36
|
biimtrid |
|
| 38 |
37
|
ssrdv |
|
| 39 |
|
iunfi |
|
| 40 |
39
|
ex |
|
| 41 |
|
ssfi |
|
| 42 |
41
|
expcom |
|
| 43 |
40 42
|
sylan9 |
|
| 44 |
8 38 43
|
syl2anc |
|
| 45 |
44
|
expimpd |
|
| 46 |
7 45
|
sylan2b |
|
| 47 |
46
|
rexlimdva |
|
| 48 |
6 47
|
mpd |
|
| 49 |
|
snfi |
|
| 50 |
|
unfi |
|
| 51 |
48 49 50
|
sylancl |
|
| 52 |
|
ssun1 |
|
| 53 |
|
undif1 |
|
| 54 |
52 53
|
sseqtrri |
|
| 55 |
|
ssfi |
|
| 56 |
51 54 55
|
sylancl |
|
| 57 |
56 23
|
jca |
|
| 58 |
57
|
ex |
|
| 59 |
|
cmptop |
|
| 60 |
1 2
|
finlocfin |
|
| 61 |
60
|
3expib |
|
| 62 |
59 61
|
syl |
|
| 63 |
58 62
|
impbid |
|