Metamath Proof Explorer


Theorem unisngl

Description: Taking the union of the set of singletons recovers the initial set. (Contributed by Thierry Arnoux, 9-Jan-2020)

Ref Expression
Hypothesis dissnref.c C = u | x X u = x
Assertion unisngl X = C

Proof

Step Hyp Ref Expression
1 dissnref.c C = u | x X u = x
2 1 unieqi C = u | x X u = x
3 simpl y u u = x y u
4 simpr y u u = x u = x
5 3 4 eleqtrd y u u = x y x
6 5 exlimiv u y u u = x y x
7 eqid x = x
8 snex x V
9 eleq2 u = x y u y x
10 eqeq1 u = x u = x x = x
11 9 10 anbi12d u = x y u u = x y x x = x
12 8 11 spcev y x x = x u y u u = x
13 7 12 mpan2 y x u y u u = x
14 6 13 impbii u y u u = x y x
15 velsn y x y = x
16 equcom y = x x = y
17 14 15 16 3bitri u y u u = x x = y
18 17 rexbii x X u y u u = x x X x = y
19 r19.42v x X y u u = x y u x X u = x
20 19 exbii u x X y u u = x u y u x X u = x
21 rexcom4 x X u y u u = x u x X y u u = x
22 eluniab y u | x X u = x u y u x X u = x
23 20 21 22 3bitr4ri y u | x X u = x x X u y u u = x
24 risset y X x X x = y
25 18 23 24 3bitr4i y u | x X u = x y X
26 25 eqriv u | x X u = x = X
27 2 26 eqtr2i X = C