Step |
Hyp |
Ref |
Expression |
1 |
|
dissnref.c |
|
2 |
|
simpr |
|
3 |
1
|
unisngl |
|
4 |
2 3
|
eqtrdi |
|
5 |
|
simplr |
|
6 |
|
simprr |
|
7 |
6
|
snssd |
|
8 |
5 7
|
eqsstrd |
|
9 |
|
simplr |
|
10 |
|
simp-4r |
|
11 |
9 10
|
eleqtrrd |
|
12 |
|
eluni2 |
|
13 |
11 12
|
sylib |
|
14 |
8 13
|
reximddv |
|
15 |
1
|
abeq2i |
|
16 |
15
|
biimpi |
|
17 |
16
|
adantl |
|
18 |
14 17
|
r19.29a |
|
19 |
18
|
ralrimiva |
|
20 |
|
pwexg |
|
21 |
|
simpr |
|
22 |
|
snelpwi |
|
23 |
22
|
ad2antlr |
|
24 |
21 23
|
eqeltrd |
|
25 |
24 16
|
r19.29a |
|
26 |
25
|
ssriv |
|
27 |
26
|
a1i |
|
28 |
20 27
|
ssexd |
|
29 |
28
|
adantr |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
30 31
|
isref |
|
33 |
29 32
|
syl |
|
34 |
4 19 33
|
mpbir2and |
|