Metamath Proof Explorer


Theorem dissnlocfin

Description: The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020)

Ref Expression
Hypothesis dissnref.c C = u | x X u = x
Assertion dissnlocfin X V C LocFin 𝒫 X

Proof

Step Hyp Ref Expression
1 dissnref.c C = u | x X u = x
2 distop X V 𝒫 X Top
3 eqidd X V X = X
4 snelpwi z X z 𝒫 X
5 4 adantl X V z X z 𝒫 X
6 vsnid z z
7 6 a1i X V z X z z
8 nfv u X V z X
9 nfrab1 _ u u C | u z
10 nfcv _ u z
11 1 abeq2i u C x X u = x
12 11 anbi1i u C u z x X u = x u z
13 simpr X V z X u z x X u = x u = x
14 simplr X V z X u z x X u = x x z u = x
15 14 ineq1d X V z X u z x X u = x x z u z = x z
16 disjsn2 x z x z =
17 16 adantl X V z X u z x X u = x x z x z =
18 15 17 eqtrd X V z X u z x X u = x x z u z =
19 simp-4r X V z X u z x X u = x x z u z
20 19 neneqd X V z X u z x X u = x x z ¬ u z =
21 18 20 pm2.65da X V z X u z x X u = x ¬ x z
22 nne ¬ x z x = z
23 21 22 sylib X V z X u z x X u = x x = z
24 23 sneqd X V z X u z x X u = x x = z
25 13 24 eqtrd X V z X u z x X u = x u = z
26 25 r19.29an X V z X u z x X u = x u = z
27 26 an32s X V z X x X u = x u z u = z
28 27 anasss X V z X x X u = x u z u = z
29 sneq x = z x = z
30 29 rspceeqv z X u = z x X u = x
31 30 adantll X V z X u = z x X u = x
32 simpr X V z X u = z u = z
33 32 ineq1d X V z X u = z u z = z z
34 inidm z z = z
35 33 34 eqtrdi X V z X u = z u z = z
36 vex z V
37 36 snnz z
38 37 a1i X V z X u = z z
39 35 38 eqnetrd X V z X u = z u z
40 31 39 jca X V z X u = z x X u = x u z
41 28 40 impbida X V z X x X u = x u z u = z
42 12 41 syl5bb X V z X u C u z u = z
43 rabid u u C | u z u C u z
44 velsn u z u = z
45 42 43 44 3bitr4g X V z X u u C | u z u z
46 8 9 10 45 eqrd X V z X u C | u z = z
47 snfi z Fin
48 46 47 eqeltrdi X V z X u C | u z Fin
49 eleq2 y = z z y z z
50 ineq2 y = z u y = u z
51 50 neeq1d y = z u y u z
52 51 rabbidv y = z u C | u y = u C | u z
53 52 eleq1d y = z u C | u y Fin u C | u z Fin
54 49 53 anbi12d y = z z y u C | u y Fin z z u C | u z Fin
55 54 rspcev z 𝒫 X z z u C | u z Fin y 𝒫 X z y u C | u y Fin
56 5 7 48 55 syl12anc X V z X y 𝒫 X z y u C | u y Fin
57 56 ralrimiva X V z X y 𝒫 X z y u C | u y Fin
58 unipw 𝒫 X = X
59 58 eqcomi X = 𝒫 X
60 1 unisngl X = C
61 59 60 islocfin C LocFin 𝒫 X 𝒫 X Top X = X z X y 𝒫 X z y u C | u y Fin
62 2 3 57 61 syl3anbrc X V C LocFin 𝒫 X