Step |
Hyp |
Ref |
Expression |
1 |
|
dissnref.c |
|
2 |
|
distop |
|
3 |
|
eqidd |
|
4 |
|
snelpwi |
|
5 |
4
|
adantl |
|
6 |
|
vsnid |
|
7 |
6
|
a1i |
|
8 |
|
nfv |
|
9 |
|
nfrab1 |
|
10 |
|
nfcv |
|
11 |
1
|
abeq2i |
|
12 |
11
|
anbi1i |
|
13 |
|
simpr |
|
14 |
|
simplr |
|
15 |
14
|
ineq1d |
|
16 |
|
disjsn2 |
|
17 |
16
|
adantl |
|
18 |
15 17
|
eqtrd |
|
19 |
|
simp-4r |
|
20 |
19
|
neneqd |
|
21 |
18 20
|
pm2.65da |
|
22 |
|
nne |
|
23 |
21 22
|
sylib |
|
24 |
23
|
sneqd |
|
25 |
13 24
|
eqtrd |
|
26 |
25
|
r19.29an |
|
27 |
26
|
an32s |
|
28 |
27
|
anasss |
|
29 |
|
sneq |
|
30 |
29
|
rspceeqv |
|
31 |
30
|
adantll |
|
32 |
|
simpr |
|
33 |
32
|
ineq1d |
|
34 |
|
inidm |
|
35 |
33 34
|
eqtrdi |
|
36 |
|
vex |
|
37 |
36
|
snnz |
|
38 |
37
|
a1i |
|
39 |
35 38
|
eqnetrd |
|
40 |
31 39
|
jca |
|
41 |
28 40
|
impbida |
|
42 |
12 41
|
syl5bb |
|
43 |
|
rabid |
|
44 |
|
velsn |
|
45 |
42 43 44
|
3bitr4g |
|
46 |
8 9 10 45
|
eqrd |
|
47 |
|
snfi |
|
48 |
46 47
|
eqeltrdi |
|
49 |
|
eleq2 |
|
50 |
|
ineq2 |
|
51 |
50
|
neeq1d |
|
52 |
51
|
rabbidv |
|
53 |
52
|
eleq1d |
|
54 |
49 53
|
anbi12d |
|
55 |
54
|
rspcev |
|
56 |
5 7 48 55
|
syl12anc |
|
57 |
56
|
ralrimiva |
|
58 |
|
unipw |
|
59 |
58
|
eqcomi |
|
60 |
1
|
unisngl |
|
61 |
59 60
|
islocfin |
|
62 |
2 3 57 61
|
syl3anbrc |
|