| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dissnref.c |
|
| 2 |
|
distop |
|
| 3 |
|
eqidd |
|
| 4 |
|
snelpwi |
|
| 5 |
4
|
adantl |
|
| 6 |
|
vsnid |
|
| 7 |
6
|
a1i |
|
| 8 |
|
nfv |
|
| 9 |
|
nfrab1 |
|
| 10 |
|
nfcv |
|
| 11 |
1
|
eqabri |
|
| 12 |
11
|
anbi1i |
|
| 13 |
|
simpr |
|
| 14 |
|
simplr |
|
| 15 |
14
|
ineq1d |
|
| 16 |
|
disjsn2 |
|
| 17 |
16
|
adantl |
|
| 18 |
15 17
|
eqtrd |
|
| 19 |
|
simp-4r |
|
| 20 |
19
|
neneqd |
|
| 21 |
18 20
|
pm2.65da |
|
| 22 |
|
nne |
|
| 23 |
21 22
|
sylib |
|
| 24 |
23
|
sneqd |
|
| 25 |
13 24
|
eqtrd |
|
| 26 |
25
|
r19.29an |
|
| 27 |
26
|
an32s |
|
| 28 |
27
|
anasss |
|
| 29 |
|
sneq |
|
| 30 |
29
|
rspceeqv |
|
| 31 |
30
|
adantll |
|
| 32 |
|
simpr |
|
| 33 |
32
|
ineq1d |
|
| 34 |
|
inidm |
|
| 35 |
33 34
|
eqtrdi |
|
| 36 |
|
vex |
|
| 37 |
36
|
snnz |
|
| 38 |
37
|
a1i |
|
| 39 |
35 38
|
eqnetrd |
|
| 40 |
31 39
|
jca |
|
| 41 |
28 40
|
impbida |
|
| 42 |
12 41
|
bitrid |
|
| 43 |
|
rabid |
|
| 44 |
|
velsn |
|
| 45 |
42 43 44
|
3bitr4g |
|
| 46 |
8 9 10 45
|
eqrd |
|
| 47 |
|
snfi |
|
| 48 |
46 47
|
eqeltrdi |
|
| 49 |
|
eleq2 |
|
| 50 |
|
ineq2 |
|
| 51 |
50
|
neeq1d |
|
| 52 |
51
|
rabbidv |
|
| 53 |
52
|
eleq1d |
|
| 54 |
49 53
|
anbi12d |
|
| 55 |
54
|
rspcev |
|
| 56 |
5 7 48 55
|
syl12anc |
|
| 57 |
56
|
ralrimiva |
|
| 58 |
|
unipw |
|
| 59 |
58
|
eqcomi |
|
| 60 |
1
|
unisngl |
|
| 61 |
59 60
|
islocfin |
|
| 62 |
2 3 57 61
|
syl3anbrc |
|