Step |
Hyp |
Ref |
Expression |
1 |
|
locfindis.1 |
|
2 |
|
lfinpfin |
|
3 |
|
unipw |
|
4 |
3
|
eqcomi |
|
5 |
4 1
|
locfinbas |
|
6 |
2 5
|
jca |
|
7 |
|
simpr |
|
8 |
|
uniexg |
|
9 |
1 8
|
eqeltrid |
|
10 |
9
|
adantr |
|
11 |
7 10
|
eqeltrd |
|
12 |
|
distop |
|
13 |
11 12
|
syl |
|
14 |
|
snelpwi |
|
15 |
14
|
adantl |
|
16 |
|
snidg |
|
17 |
16
|
adantl |
|
18 |
|
simpll |
|
19 |
7
|
eleq2d |
|
20 |
19
|
biimpa |
|
21 |
1
|
ptfinfin |
|
22 |
18 20 21
|
syl2anc |
|
23 |
|
eleq2 |
|
24 |
|
ineq2 |
|
25 |
24
|
neeq1d |
|
26 |
|
disjsn |
|
27 |
26
|
necon2abii |
|
28 |
25 27
|
bitr4di |
|
29 |
28
|
rabbidv |
|
30 |
29
|
eleq1d |
|
31 |
23 30
|
anbi12d |
|
32 |
31
|
rspcev |
|
33 |
15 17 22 32
|
syl12anc |
|
34 |
33
|
ralrimiva |
|
35 |
4 1
|
islocfin |
|
36 |
13 7 34 35
|
syl3anbrc |
|
37 |
6 36
|
impbii |
|