Metamath Proof Explorer


Theorem ptfinfin

Description: A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypothesis ptfinfin.1 X = A
Assertion ptfinfin A PtFin P X x A | P x Fin

Proof

Step Hyp Ref Expression
1 ptfinfin.1 X = A
2 1 isptfin A PtFin A PtFin p X x A | p x Fin
3 2 ibi A PtFin p X x A | p x Fin
4 eleq1 p = P p x P x
5 4 rabbidv p = P x A | p x = x A | P x
6 5 eleq1d p = P x A | p x Fin x A | P x Fin
7 6 rspccv p X x A | p x Fin P X x A | P x Fin
8 3 7 syl A PtFin P X x A | P x Fin
9 8 imp A PtFin P X x A | P x Fin