Metamath Proof Explorer


Theorem finlocfin

Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypotheses finlocfin.1 X=J
finlocfin.2 Y=A
Assertion finlocfin JTopAFinX=YALocFinJ

Proof

Step Hyp Ref Expression
1 finlocfin.1 X=J
2 finlocfin.2 Y=A
3 simp1 JTopAFinX=YJTop
4 simp3 JTopAFinX=YX=Y
5 simpl1 JTopAFinX=YxXJTop
6 1 topopn JTopXJ
7 5 6 syl JTopAFinX=YxXXJ
8 simpr JTopAFinX=YxXxX
9 simpl2 JTopAFinX=YxXAFin
10 ssrab2 sA|sXA
11 ssfi AFinsA|sXAsA|sXFin
12 9 10 11 sylancl JTopAFinX=YxXsA|sXFin
13 eleq2 n=XxnxX
14 ineq2 n=Xsn=sX
15 14 neeq1d n=XsnsX
16 15 rabbidv n=XsA|sn=sA|sX
17 16 eleq1d n=XsA|snFinsA|sXFin
18 13 17 anbi12d n=XxnsA|snFinxXsA|sXFin
19 18 rspcev XJxXsA|sXFinnJxnsA|snFin
20 7 8 12 19 syl12anc JTopAFinX=YxXnJxnsA|snFin
21 20 ralrimiva JTopAFinX=YxXnJxnsA|snFin
22 1 2 islocfin ALocFinJJTopX=YxXnJxnsA|snFin
23 3 4 21 22 syl3anbrc JTopAFinX=YALocFinJ