Metamath Proof Explorer


Definition df-locfin

Description: Define "locally finite." (Contributed by Jeff Hankins, 21-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Assertion df-locfin LocFin=xTopy|x=ypxnxpnsy|snFin

Detailed syntax breakdown

Step Hyp Ref Expression
0 clocfin classLocFin
1 vx setvarx
2 ctop classTop
3 vy setvary
4 1 cv setvarx
5 4 cuni classx
6 3 cv setvary
7 6 cuni classy
8 5 7 wceq wffx=y
9 vp setvarp
10 vn setvarn
11 9 cv setvarp
12 10 cv setvarn
13 11 12 wcel wffpn
14 vs setvars
15 14 cv setvars
16 15 12 cin classsn
17 c0 class
18 16 17 wne wffsn
19 18 14 6 crab classsy|sn
20 cfn classFin
21 19 20 wcel wffsy|snFin
22 13 21 wa wffpnsy|snFin
23 22 10 4 wrex wffnxpnsy|snFin
24 23 9 5 wral wffpxnxpnsy|snFin
25 8 24 wa wffx=ypxnxpnsy|snFin
26 25 3 cab classy|x=ypxnxpnsy|snFin
27 1 2 26 cmpt classxTopy|x=ypxnxpnsy|snFin
28 0 27 wceq wffLocFin=xTopy|x=ypxnxpnsy|snFin