Metamath Proof Explorer


Theorem finlocfin

Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypotheses finlocfin.1 𝑋 = 𝐽
finlocfin.2 𝑌 = 𝐴
Assertion finlocfin ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ ( LocFin ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 finlocfin.1 𝑋 = 𝐽
2 finlocfin.2 𝑌 = 𝐴
3 simp1 ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐽 ∈ Top )
4 simp3 ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
5 simpl1 ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → 𝐽 ∈ Top )
6 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
7 5 6 syl ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → 𝑋𝐽 )
8 simpr ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → 𝑥𝑋 )
9 simpl2 ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → 𝐴 ∈ Fin )
10 ssrab2 { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } ⊆ 𝐴
11 ssfi ( ( 𝐴 ∈ Fin ∧ { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } ⊆ 𝐴 ) → { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } ∈ Fin )
12 9 10 11 sylancl ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } ∈ Fin )
13 eleq2 ( 𝑛 = 𝑋 → ( 𝑥𝑛𝑥𝑋 ) )
14 ineq2 ( 𝑛 = 𝑋 → ( 𝑠𝑛 ) = ( 𝑠𝑋 ) )
15 14 neeq1d ( 𝑛 = 𝑋 → ( ( 𝑠𝑛 ) ≠ ∅ ↔ ( 𝑠𝑋 ) ≠ ∅ ) )
16 15 rabbidv ( 𝑛 = 𝑋 → { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } = { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } )
17 16 eleq1d ( 𝑛 = 𝑋 → ( { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ↔ { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } ∈ Fin ) )
18 13 17 anbi12d ( 𝑛 = 𝑋 → ( ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑥𝑋 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } ∈ Fin ) ) )
19 18 rspcev ( ( 𝑋𝐽 ∧ ( 𝑥𝑋 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑋 ) ≠ ∅ } ∈ Fin ) ) → ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
20 7 8 12 19 syl12anc ( ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
21 20 ralrimiva ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
22 1 2 islocfin ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
23 3 4 21 22 syl3anbrc ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ ( LocFin ‘ 𝐽 ) )