Step |
Hyp |
Ref |
Expression |
1 |
|
locfindis.1 |
⊢ 𝑌 = ∪ 𝐶 |
2 |
|
lfinpfin |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) → 𝐶 ∈ PtFin ) |
3 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
4 |
3
|
eqcomi |
⊢ 𝑋 = ∪ 𝒫 𝑋 |
5 |
4 1
|
locfinbas |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) → 𝑋 = 𝑌 ) |
6 |
2 5
|
jca |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) → ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ) |
7 |
|
simpr |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
8 |
|
uniexg |
⊢ ( 𝐶 ∈ PtFin → ∪ 𝐶 ∈ V ) |
9 |
1 8
|
eqeltrid |
⊢ ( 𝐶 ∈ PtFin → 𝑌 ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝑌 ∈ V ) |
11 |
7 10
|
eqeltrd |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ V ) |
12 |
|
distop |
⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ Top ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝒫 𝑋 ∈ Top ) |
14 |
|
snelpwi |
⊢ ( 𝑥 ∈ 𝑋 → { 𝑥 } ∈ 𝒫 𝑋 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
16 |
|
snidg |
⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ∈ { 𝑥 } ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ { 𝑥 } ) |
18 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ PtFin ) |
19 |
7
|
eleq2d |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ 𝑌 ) ) |
20 |
19
|
biimpa |
⊢ ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑌 ) |
21 |
1
|
ptfinfin |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑥 ∈ 𝑌 ) → { 𝑠 ∈ 𝐶 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑠 ∈ 𝐶 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) |
23 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑥 } → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ { 𝑥 } ) ) |
24 |
|
ineq2 |
⊢ ( 𝑦 = { 𝑥 } → ( 𝑠 ∩ 𝑦 ) = ( 𝑠 ∩ { 𝑥 } ) ) |
25 |
24
|
neeq1d |
⊢ ( 𝑦 = { 𝑥 } → ( ( 𝑠 ∩ 𝑦 ) ≠ ∅ ↔ ( 𝑠 ∩ { 𝑥 } ) ≠ ∅ ) ) |
26 |
|
disjsn |
⊢ ( ( 𝑠 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ 𝑠 ) |
27 |
26
|
necon2abii |
⊢ ( 𝑥 ∈ 𝑠 ↔ ( 𝑠 ∩ { 𝑥 } ) ≠ ∅ ) |
28 |
25 27
|
bitr4di |
⊢ ( 𝑦 = { 𝑥 } → ( ( 𝑠 ∩ 𝑦 ) ≠ ∅ ↔ 𝑥 ∈ 𝑠 ) ) |
29 |
28
|
rabbidv |
⊢ ( 𝑦 = { 𝑥 } → { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑦 ) ≠ ∅ } = { 𝑠 ∈ 𝐶 ∣ 𝑥 ∈ 𝑠 } ) |
30 |
29
|
eleq1d |
⊢ ( 𝑦 = { 𝑥 } → ( { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ↔ { 𝑠 ∈ 𝐶 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) |
31 |
23 30
|
anbi12d |
⊢ ( 𝑦 = { 𝑥 } → ( ( 𝑥 ∈ 𝑦 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ { 𝑠 ∈ 𝐶 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) ) |
32 |
31
|
rspcev |
⊢ ( ( { 𝑥 } ∈ 𝒫 𝑋 ∧ ( 𝑥 ∈ { 𝑥 } ∧ { 𝑠 ∈ 𝐶 ∣ 𝑥 ∈ 𝑠 } ∈ Fin ) ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝑦 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) |
33 |
15 17 22 32
|
syl12anc |
⊢ ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝑦 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) |
34 |
33
|
ralrimiva |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝑦 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) |
35 |
4 1
|
islocfin |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑥 ∈ 𝑦 ∧ { 𝑠 ∈ 𝐶 ∣ ( 𝑠 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) ) |
36 |
13 7 34 35
|
syl3anbrc |
⊢ ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ) |
37 |
6 36
|
impbii |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ) |