Metamath Proof Explorer


Theorem locfindis

Description: The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis locfindis.1 𝑌 = 𝐶
Assertion locfindis ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 locfindis.1 𝑌 = 𝐶
2 lfinpfin ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) → 𝐶 ∈ PtFin )
3 unipw 𝒫 𝑋 = 𝑋
4 3 eqcomi 𝑋 = 𝒫 𝑋
5 4 1 locfinbas ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) → 𝑋 = 𝑌 )
6 2 5 jca ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) → ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) )
7 simpr ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
8 uniexg ( 𝐶 ∈ PtFin → 𝐶 ∈ V )
9 1 8 eqeltrid ( 𝐶 ∈ PtFin → 𝑌 ∈ V )
10 9 adantr ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝑌 ∈ V )
11 7 10 eqeltrd ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ V )
12 distop ( 𝑋 ∈ V → 𝒫 𝑋 ∈ Top )
13 11 12 syl ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝒫 𝑋 ∈ Top )
14 snelpwi ( 𝑥𝑋 → { 𝑥 } ∈ 𝒫 𝑋 )
15 14 adantl ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 )
16 snidg ( 𝑥𝑋𝑥 ∈ { 𝑥 } )
17 16 adantl ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → 𝑥 ∈ { 𝑥 } )
18 simpll ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → 𝐶 ∈ PtFin )
19 7 eleq2d ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → ( 𝑥𝑋𝑥𝑌 ) )
20 19 biimpa ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → 𝑥𝑌 )
21 1 ptfinfin ( ( 𝐶 ∈ PtFin ∧ 𝑥𝑌 ) → { 𝑠𝐶𝑥𝑠 } ∈ Fin )
22 18 20 21 syl2anc ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → { 𝑠𝐶𝑥𝑠 } ∈ Fin )
23 eleq2 ( 𝑦 = { 𝑥 } → ( 𝑥𝑦𝑥 ∈ { 𝑥 } ) )
24 ineq2 ( 𝑦 = { 𝑥 } → ( 𝑠𝑦 ) = ( 𝑠 ∩ { 𝑥 } ) )
25 24 neeq1d ( 𝑦 = { 𝑥 } → ( ( 𝑠𝑦 ) ≠ ∅ ↔ ( 𝑠 ∩ { 𝑥 } ) ≠ ∅ ) )
26 disjsn ( ( 𝑠 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥𝑠 )
27 26 necon2abii ( 𝑥𝑠 ↔ ( 𝑠 ∩ { 𝑥 } ) ≠ ∅ )
28 25 27 bitr4di ( 𝑦 = { 𝑥 } → ( ( 𝑠𝑦 ) ≠ ∅ ↔ 𝑥𝑠 ) )
29 28 rabbidv ( 𝑦 = { 𝑥 } → { 𝑠𝐶 ∣ ( 𝑠𝑦 ) ≠ ∅ } = { 𝑠𝐶𝑥𝑠 } )
30 29 eleq1d ( 𝑦 = { 𝑥 } → ( { 𝑠𝐶 ∣ ( 𝑠𝑦 ) ≠ ∅ } ∈ Fin ↔ { 𝑠𝐶𝑥𝑠 } ∈ Fin ) )
31 23 30 anbi12d ( 𝑦 = { 𝑥 } → ( ( 𝑥𝑦 ∧ { 𝑠𝐶 ∣ ( 𝑠𝑦 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ { 𝑠𝐶𝑥𝑠 } ∈ Fin ) ) )
32 31 rspcev ( ( { 𝑥 } ∈ 𝒫 𝑋 ∧ ( 𝑥 ∈ { 𝑥 } ∧ { 𝑠𝐶𝑥𝑠 } ∈ Fin ) ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑥𝑦 ∧ { 𝑠𝐶 ∣ ( 𝑠𝑦 ) ≠ ∅ } ∈ Fin ) )
33 15 17 22 32 syl12anc ( ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) ∧ 𝑥𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑥𝑦 ∧ { 𝑠𝐶 ∣ ( 𝑠𝑦 ) ≠ ∅ } ∈ Fin ) )
34 33 ralrimiva ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝑋 ( 𝑥𝑦 ∧ { 𝑠𝐶 ∣ ( 𝑠𝑦 ) ≠ ∅ } ∈ Fin ) )
35 4 1 islocfin ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑦 ∈ 𝒫 𝑋 ( 𝑥𝑦 ∧ { 𝑠𝐶 ∣ ( 𝑠𝑦 ) ≠ ∅ } ∈ Fin ) ) )
36 13 7 34 35 syl3anbrc ( ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) → 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) )
37 6 36 impbii ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝐶 ∈ PtFin ∧ 𝑋 = 𝑌 ) )