Metamath Proof Explorer


Theorem locfincf

Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis locfincf.1 𝑋 = 𝐽
Assertion locfincf ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( LocFin ‘ 𝐽 ) ⊆ ( LocFin ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 locfincf.1 𝑋 = 𝐽
2 topontop ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) → 𝐾 ∈ Top )
3 2 ad2antrr ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝐾 ∈ Top )
4 toponuni ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐾 )
5 4 ad2antrr ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝑋 = 𝐾 )
6 eqid 𝑥 = 𝑥
7 1 6 locfinbas ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) → 𝑋 = 𝑥 )
8 7 adantl ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝑋 = 𝑥 )
9 5 8 eqtr3d ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝐾 = 𝑥 )
10 5 eleq2d ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝑦𝑋𝑦 𝐾 ) )
11 1 locfinnei ( ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑦𝑋 ) → ∃ 𝑛𝐽 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
12 11 ex ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) → ( 𝑦𝑋 → ∃ 𝑛𝐽 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
13 ssrexv ( 𝐽𝐾 → ( ∃ 𝑛𝐽 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) → ∃ 𝑛𝐾 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
14 13 adantl ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( ∃ 𝑛𝐽 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) → ∃ 𝑛𝐾 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
15 12 14 sylan9r ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝑦𝑋 → ∃ 𝑛𝐾 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
16 10 15 sylbird ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝑦 𝐾 → ∃ 𝑛𝐾 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
17 16 ralrimiv ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ∀ 𝑦 𝐾𝑛𝐾 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
18 eqid 𝐾 = 𝐾
19 18 6 islocfin ( 𝑥 ∈ ( LocFin ‘ 𝐾 ) ↔ ( 𝐾 ∈ Top ∧ 𝐾 = 𝑥 ∧ ∀ 𝑦 𝐾𝑛𝐾 ( 𝑦𝑛 ∧ { 𝑠𝑥 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
20 3 9 17 19 syl3anbrc ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝑥 ∈ ( LocFin ‘ 𝐾 ) )
21 20 ex ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) → 𝑥 ∈ ( LocFin ‘ 𝐾 ) ) )
22 21 ssrdv ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽𝐾 ) → ( LocFin ‘ 𝐽 ) ⊆ ( LocFin ‘ 𝐾 ) )