Step |
Hyp |
Ref |
Expression |
1 |
|
locfincf.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) → 𝐾 ∈ Top ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝐾 ∈ Top ) |
4 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐾 ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝑋 = ∪ 𝐾 ) |
6 |
|
eqid |
⊢ ∪ 𝑥 = ∪ 𝑥 |
7 |
1 6
|
locfinbas |
⊢ ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) → 𝑋 = ∪ 𝑥 ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝑋 = ∪ 𝑥 ) |
9 |
5 8
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ∪ 𝐾 = ∪ 𝑥 ) |
10 |
5
|
eleq2d |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ 𝐾 ) ) |
11 |
1
|
locfinnei |
⊢ ( ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑛 ∈ 𝐽 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
12 |
11
|
ex |
⊢ ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) → ( 𝑦 ∈ 𝑋 → ∃ 𝑛 ∈ 𝐽 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
13 |
|
ssrexv |
⊢ ( 𝐽 ⊆ 𝐾 → ( ∃ 𝑛 ∈ 𝐽 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → ∃ 𝑛 ∈ 𝐾 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ∃ 𝑛 ∈ 𝐽 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) → ∃ 𝑛 ∈ 𝐾 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
15 |
12 14
|
sylan9r |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝑦 ∈ 𝑋 → ∃ 𝑛 ∈ 𝐾 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
16 |
10 15
|
sylbird |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ( 𝑦 ∈ ∪ 𝐾 → ∃ 𝑛 ∈ 𝐾 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
17 |
16
|
ralrimiv |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → ∀ 𝑦 ∈ ∪ 𝐾 ∃ 𝑛 ∈ 𝐾 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
18 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
19 |
18 6
|
islocfin |
⊢ ( 𝑥 ∈ ( LocFin ‘ 𝐾 ) ↔ ( 𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝑥 ∧ ∀ 𝑦 ∈ ∪ 𝐾 ∃ 𝑛 ∈ 𝐾 ( 𝑦 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑥 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
20 |
3 9 17 19
|
syl3anbrc |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( LocFin ‘ 𝐽 ) ) → 𝑥 ∈ ( LocFin ‘ 𝐾 ) ) |
21 |
20
|
ex |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( LocFin ‘ 𝐽 ) → 𝑥 ∈ ( LocFin ‘ 𝐾 ) ) ) |
22 |
21
|
ssrdv |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( LocFin ‘ 𝐽 ) ⊆ ( LocFin ‘ 𝐾 ) ) |