Metamath Proof Explorer


Theorem comppfsc

Description: A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis comppfsc.1 𝑋 = 𝐽
Assertion comppfsc ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) ) )

Proof

Step Hyp Ref Expression
1 comppfsc.1 𝑋 = 𝐽
2 elpwi ( 𝑐 ∈ 𝒫 𝐽𝑐𝐽 )
3 1 cmpcov ( ( 𝐽 ∈ Comp ∧ 𝑐𝐽𝑋 = 𝑐 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = 𝑑 )
4 elfpw ( 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) ↔ ( 𝑑𝑐𝑑 ∈ Fin ) )
5 finptfin ( 𝑑 ∈ Fin → 𝑑 ∈ PtFin )
6 5 anim1i ( ( 𝑑 ∈ Fin ∧ ( 𝑑𝑐𝑋 = 𝑑 ) ) → ( 𝑑 ∈ PtFin ∧ ( 𝑑𝑐𝑋 = 𝑑 ) ) )
7 6 anassrs ( ( ( 𝑑 ∈ Fin ∧ 𝑑𝑐 ) ∧ 𝑋 = 𝑑 ) → ( 𝑑 ∈ PtFin ∧ ( 𝑑𝑐𝑋 = 𝑑 ) ) )
8 7 ancom1s ( ( ( 𝑑𝑐𝑑 ∈ Fin ) ∧ 𝑋 = 𝑑 ) → ( 𝑑 ∈ PtFin ∧ ( 𝑑𝑐𝑋 = 𝑑 ) ) )
9 4 8 sylanb ( ( 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑋 = 𝑑 ) → ( 𝑑 ∈ PtFin ∧ ( 𝑑𝑐𝑋 = 𝑑 ) ) )
10 9 reximi2 ( ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = 𝑑 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) )
11 3 10 syl ( ( 𝐽 ∈ Comp ∧ 𝑐𝐽𝑋 = 𝑐 ) → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) )
12 11 3exp ( 𝐽 ∈ Comp → ( 𝑐𝐽 → ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) ) )
13 2 12 syl5 ( 𝐽 ∈ Comp → ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) ) )
14 13 ralrimiv ( 𝐽 ∈ Comp → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) )
15 elpwi ( 𝑎 ∈ 𝒫 𝐽𝑎𝐽 )
16 0elpw ∅ ∈ 𝒫 𝑎
17 0fin ∅ ∈ Fin
18 16 17 elini ∅ ∈ ( 𝒫 𝑎 ∩ Fin )
19 unieq ( 𝑏 = ∅ → 𝑏 = ∅ )
20 uni0 ∅ = ∅
21 19 20 eqtrdi ( 𝑏 = ∅ → 𝑏 = ∅ )
22 21 rspceeqv ( ( ∅ ∈ ( 𝒫 𝑎 ∩ Fin ) ∧ 𝑋 = ∅ ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 )
23 18 22 mpan ( 𝑋 = ∅ → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 )
24 23 a1i13 ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( 𝑋 = ∅ → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
25 n0 ( 𝑋 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑋 )
26 simp2 ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → 𝑋 = 𝑎 )
27 26 eleq2d ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( 𝑥𝑋𝑥 𝑎 ) )
28 27 biimpd ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( 𝑥𝑋𝑥 𝑎 ) )
29 eluni2 ( 𝑥 𝑎 ↔ ∃ 𝑠𝑎 𝑥𝑠 )
30 28 29 syl6ib ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( 𝑥𝑋 → ∃ 𝑠𝑎 𝑥𝑠 ) )
31 simpl3 ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑎𝐽 )
32 simprl ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑠𝑎 )
33 31 32 sseldd ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑠𝐽 )
34 elssuni ( 𝑠𝐽𝑠 𝐽 )
35 34 1 sseqtrrdi ( 𝑠𝐽𝑠𝑋 )
36 33 35 syl ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑠𝑋 )
37 36 ralrimivw ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ∀ 𝑝𝑎 𝑠𝑋 )
38 iunss ( 𝑝𝑎 𝑠𝑋 ↔ ∀ 𝑝𝑎 𝑠𝑋 )
39 37 38 sylibr ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑝𝑎 𝑠𝑋 )
40 ssequn1 ( 𝑝𝑎 𝑠𝑋 ↔ ( 𝑝𝑎 𝑠𝑋 ) = 𝑋 )
41 39 40 sylib ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( 𝑝𝑎 𝑠𝑋 ) = 𝑋 )
42 simpl2 ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑋 = 𝑎 )
43 uniiun 𝑎 = 𝑝𝑎 𝑝
44 42 43 eqtrdi ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑋 = 𝑝𝑎 𝑝 )
45 44 uneq2d ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( 𝑝𝑎 𝑠𝑋 ) = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝 ) )
46 41 45 eqtr3d ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑋 = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝 ) )
47 iunun 𝑝𝑎 ( 𝑠𝑝 ) = ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝 )
48 vex 𝑠 ∈ V
49 vex 𝑝 ∈ V
50 48 49 unex ( 𝑠𝑝 ) ∈ V
51 50 dfiun3 𝑝𝑎 ( 𝑠𝑝 ) = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) )
52 47 51 eqtr3i ( 𝑝𝑎 𝑠 𝑝𝑎 𝑝 ) = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) )
53 46 52 eqtrdi ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑋 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) )
54 simpll1 ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ 𝑝𝑎 ) → 𝐽 ∈ Top )
55 33 adantr ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ 𝑝𝑎 ) → 𝑠𝐽 )
56 31 sselda ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ 𝑝𝑎 ) → 𝑝𝐽 )
57 unopn ( ( 𝐽 ∈ Top ∧ 𝑠𝐽𝑝𝐽 ) → ( 𝑠𝑝 ) ∈ 𝐽 )
58 54 55 56 57 syl3anc ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ 𝑝𝑎 ) → ( 𝑠𝑝 ) ∈ 𝐽 )
59 58 fmpttd ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) : 𝑎𝐽 )
60 59 frnd ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ⊆ 𝐽 )
61 elpw2g ( 𝐽 ∈ Top → ( ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∈ 𝒫 𝐽 ↔ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ⊆ 𝐽 ) )
62 61 3ad2ant1 ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∈ 𝒫 𝐽 ↔ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ⊆ 𝐽 ) )
63 62 adantr ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∈ 𝒫 𝐽 ↔ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ⊆ 𝐽 ) )
64 60 63 mpbird ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∈ 𝒫 𝐽 )
65 unieq ( 𝑐 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → 𝑐 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) )
66 65 eqeq2d ( 𝑐 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ( 𝑋 = 𝑐𝑋 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ) )
67 sseq2 ( 𝑐 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ( 𝑑𝑐𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ) )
68 67 anbi1d ( 𝑐 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ( ( 𝑑𝑐𝑋 = 𝑑 ) ↔ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) )
69 68 rexbidv ( 𝑐 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ( ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ↔ ∃ 𝑑 ∈ PtFin ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) )
70 66 69 imbi12d ( 𝑐 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ( ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) ↔ ( 𝑋 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ∃ 𝑑 ∈ PtFin ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ) )
71 70 rspcv ( ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∈ 𝒫 𝐽 → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ( 𝑋 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ∃ 𝑑 ∈ PtFin ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ) )
72 64 71 syl ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ( 𝑋 = ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ∃ 𝑑 ∈ PtFin ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ) )
73 53 72 mpid ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑑 ∈ PtFin ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) )
74 simprr ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑥𝑠 )
75 ssel2 ( ( 𝑎𝐽𝑠𝑎 ) → 𝑠𝐽 )
76 75 3ad2antl3 ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ 𝑠𝑎 ) → 𝑠𝐽 )
77 76 adantrr ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑠𝐽 )
78 elunii ( ( 𝑥𝑠𝑠𝐽 ) → 𝑥 𝐽 )
79 74 77 78 syl2anc ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑥 𝐽 )
80 79 1 eleqtrrdi ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑥𝑋 )
81 80 adantr ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → 𝑥𝑋 )
82 simprr ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → 𝑋 = 𝑑 )
83 81 82 eleqtrd ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → 𝑥 𝑑 )
84 eqid 𝑑 = 𝑑
85 84 ptfinfin ( ( 𝑑 ∈ PtFin ∧ 𝑥 𝑑 ) → { 𝑧𝑑𝑥𝑧 } ∈ Fin )
86 85 expcom ( 𝑥 𝑑 → ( 𝑑 ∈ PtFin → { 𝑧𝑑𝑥𝑧 } ∈ Fin ) )
87 83 86 syl ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ( 𝑑 ∈ PtFin → { 𝑧𝑑𝑥𝑧 } ∈ Fin ) )
88 simprl ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) )
89 elun1 ( 𝑥𝑠𝑥 ∈ ( 𝑠𝑝 ) )
90 89 ad2antll ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → 𝑥 ∈ ( 𝑠𝑝 ) )
91 90 ralrimivw ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ∀ 𝑝𝑎 𝑥 ∈ ( 𝑠𝑝 ) )
92 50 rgenw 𝑝𝑎 ( 𝑠𝑝 ) ∈ V
93 eqid ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) = ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) )
94 eleq2 ( 𝑧 = ( 𝑠𝑝 ) → ( 𝑥𝑧𝑥 ∈ ( 𝑠𝑝 ) ) )
95 93 94 ralrnmptw ( ∀ 𝑝𝑎 ( 𝑠𝑝 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) 𝑥𝑧 ↔ ∀ 𝑝𝑎 𝑥 ∈ ( 𝑠𝑝 ) ) )
96 92 95 ax-mp ( ∀ 𝑧 ∈ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) 𝑥𝑧 ↔ ∀ 𝑝𝑎 𝑥 ∈ ( 𝑠𝑝 ) )
97 91 96 sylibr ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ∀ 𝑧 ∈ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) 𝑥𝑧 )
98 97 adantr ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ∀ 𝑧 ∈ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) 𝑥𝑧 )
99 ssralv ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) → ( ∀ 𝑧 ∈ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) 𝑥𝑧 → ∀ 𝑧𝑑 𝑥𝑧 ) )
100 88 98 99 sylc ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ∀ 𝑧𝑑 𝑥𝑧 )
101 rabid2 ( 𝑑 = { 𝑧𝑑𝑥𝑧 } ↔ ∀ 𝑧𝑑 𝑥𝑧 )
102 100 101 sylibr ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → 𝑑 = { 𝑧𝑑𝑥𝑧 } )
103 102 eleq1d ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ( 𝑑 ∈ Fin ↔ { 𝑧𝑑𝑥𝑧 } ∈ Fin ) )
104 103 biimprd ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ( { 𝑧𝑑𝑥𝑧 } ∈ Fin → 𝑑 ∈ Fin ) )
105 93 rnmpt ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) = { 𝑞 ∣ ∃ 𝑝𝑎 𝑞 = ( 𝑠𝑝 ) }
106 88 105 sseqtrdi ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → 𝑑 ⊆ { 𝑞 ∣ ∃ 𝑝𝑎 𝑞 = ( 𝑠𝑝 ) } )
107 ssabral ( 𝑑 ⊆ { 𝑞 ∣ ∃ 𝑝𝑎 𝑞 = ( 𝑠𝑝 ) } ↔ ∀ 𝑞𝑑𝑝𝑎 𝑞 = ( 𝑠𝑝 ) )
108 106 107 sylib ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ∀ 𝑞𝑑𝑝𝑎 𝑞 = ( 𝑠𝑝 ) )
109 uneq2 ( 𝑝 = ( 𝑓𝑞 ) → ( 𝑠𝑝 ) = ( 𝑠 ∪ ( 𝑓𝑞 ) ) )
110 109 eqeq2d ( 𝑝 = ( 𝑓𝑞 ) → ( 𝑞 = ( 𝑠𝑝 ) ↔ 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) )
111 110 ac6sfi ( ( 𝑑 ∈ Fin ∧ ∀ 𝑞𝑑𝑝𝑎 𝑞 = ( 𝑠𝑝 ) ) → ∃ 𝑓 ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) )
112 111 expcom ( ∀ 𝑞𝑑𝑝𝑎 𝑞 = ( 𝑠𝑝 ) → ( 𝑑 ∈ Fin → ∃ 𝑓 ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) )
113 108 112 syl ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ( 𝑑 ∈ Fin → ∃ 𝑓 ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) )
114 frn ( 𝑓 : 𝑑𝑎 → ran 𝑓𝑎 )
115 114 adantr ( ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) → ran 𝑓𝑎 )
116 115 ad2antll ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ran 𝑓𝑎 )
117 32 ad2antrr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑠𝑎 )
118 117 snssd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → { 𝑠 } ⊆ 𝑎 )
119 116 118 unssd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝑎 )
120 simprl ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑑 ∈ Fin )
121 simprrl ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑓 : 𝑑𝑎 )
122 121 ffnd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑓 Fn 𝑑 )
123 dffn4 ( 𝑓 Fn 𝑑𝑓 : 𝑑onto→ ran 𝑓 )
124 122 123 sylib ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑓 : 𝑑onto→ ran 𝑓 )
125 fofi ( ( 𝑑 ∈ Fin ∧ 𝑓 : 𝑑onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin )
126 120 124 125 syl2anc ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ran 𝑓 ∈ Fin )
127 snfi { 𝑠 } ∈ Fin
128 unfi ( ( ran 𝑓 ∈ Fin ∧ { 𝑠 } ∈ Fin ) → ( ran 𝑓 ∪ { 𝑠 } ) ∈ Fin )
129 126 127 128 sylancl ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ( ran 𝑓 ∪ { 𝑠 } ) ∈ Fin )
130 elfpw ( ( ran 𝑓 ∪ { 𝑠 } ) ∈ ( 𝒫 𝑎 ∩ Fin ) ↔ ( ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝑎 ∧ ( ran 𝑓 ∪ { 𝑠 } ) ∈ Fin ) )
131 119 129 130 sylanbrc ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ( ran 𝑓 ∪ { 𝑠 } ) ∈ ( 𝒫 𝑎 ∩ Fin ) )
132 simplrr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑋 = 𝑑 )
133 uniiun 𝑑 = 𝑞𝑑 𝑞
134 simprrr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) )
135 iuneq2 ( ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) → 𝑞𝑑 𝑞 = 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) )
136 134 135 syl ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑞𝑑 𝑞 = 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) )
137 133 136 syl5eq ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑑 = 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) )
138 132 137 eqtrd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑋 = 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) )
139 ssun2 { 𝑠 } ⊆ ( ran 𝑓 ∪ { 𝑠 } )
140 vsnid 𝑠 ∈ { 𝑠 }
141 139 140 sselii 𝑠 ∈ ( ran 𝑓 ∪ { 𝑠 } )
142 elssuni ( 𝑠 ∈ ( ran 𝑓 ∪ { 𝑠 } ) → 𝑠 ( ran 𝑓 ∪ { 𝑠 } ) )
143 141 142 ax-mp 𝑠 ( ran 𝑓 ∪ { 𝑠 } )
144 fvssunirn ( 𝑓𝑞 ) ⊆ ran 𝑓
145 ssun1 ran 𝑓 ⊆ ( ran 𝑓 ∪ { 𝑠 } )
146 145 unissi ran 𝑓 ( ran 𝑓 ∪ { 𝑠 } )
147 144 146 sstri ( 𝑓𝑞 ) ⊆ ( ran 𝑓 ∪ { 𝑠 } )
148 143 147 unssi ( 𝑠 ∪ ( 𝑓𝑞 ) ) ⊆ ( ran 𝑓 ∪ { 𝑠 } )
149 148 rgenw 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) ⊆ ( ran 𝑓 ∪ { 𝑠 } )
150 iunss ( 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) ⊆ ( ran 𝑓 ∪ { 𝑠 } ) ↔ ∀ 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) ⊆ ( ran 𝑓 ∪ { 𝑠 } ) )
151 149 150 mpbir 𝑞𝑑 ( 𝑠 ∪ ( 𝑓𝑞 ) ) ⊆ ( ran 𝑓 ∪ { 𝑠 } )
152 138 151 eqsstrdi ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑋 ( ran 𝑓 ∪ { 𝑠 } ) )
153 31 ad2antrr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑎𝐽 )
154 116 153 sstrd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ran 𝑓𝐽 )
155 33 ad2antrr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑠𝐽 )
156 155 snssd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → { 𝑠 } ⊆ 𝐽 )
157 154 156 unssd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝐽 )
158 uniss ( ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝐽 ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝐽 )
159 158 1 sseqtrrdi ( ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝐽 ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝑋 )
160 157 159 syl ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ( ran 𝑓 ∪ { 𝑠 } ) ⊆ 𝑋 )
161 152 160 eqssd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → 𝑋 = ( ran 𝑓 ∪ { 𝑠 } ) )
162 unieq ( 𝑏 = ( ran 𝑓 ∪ { 𝑠 } ) → 𝑏 = ( ran 𝑓 ∪ { 𝑠 } ) )
163 162 rspceeqv ( ( ( ran 𝑓 ∪ { 𝑠 } ) ∈ ( 𝒫 𝑎 ∩ Fin ) ∧ 𝑋 = ( ran 𝑓 ∪ { 𝑠 } ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 )
164 131 161 163 syl2anc ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ ( 𝑑 ∈ Fin ∧ ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 )
165 164 expr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ 𝑑 ∈ Fin ) → ( ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
166 165 exlimdv ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) ∧ 𝑑 ∈ Fin ) → ( ∃ 𝑓 ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
167 166 ex ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ( 𝑑 ∈ Fin → ( ∃ 𝑓 ( 𝑓 : 𝑑𝑎 ∧ ∀ 𝑞𝑑 𝑞 = ( 𝑠 ∪ ( 𝑓𝑞 ) ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
168 113 167 mpdd ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ( 𝑑 ∈ Fin → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
169 87 104 168 3syld ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) ∧ ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) ) → ( 𝑑 ∈ PtFin → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
170 169 ex ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) → ( 𝑑 ∈ PtFin → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
171 170 com23 ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( 𝑑 ∈ PtFin → ( ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
172 171 rexlimdv ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( ∃ 𝑑 ∈ PtFin ( 𝑑 ⊆ ran ( 𝑝𝑎 ↦ ( 𝑠𝑝 ) ) ∧ 𝑋 = 𝑑 ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
173 73 172 syld ( ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) ∧ ( 𝑠𝑎𝑥𝑠 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
174 173 rexlimdvaa ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( ∃ 𝑠𝑎 𝑥𝑠 → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
175 30 174 syld ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( 𝑥𝑋 → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
176 175 exlimdv ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( ∃ 𝑥 𝑥𝑋 → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
177 25 176 syl5bi ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( 𝑋 ≠ ∅ → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
178 24 177 pm2.61dne ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎𝐽 ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
179 15 178 syl3an3 ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑎𝑎 ∈ 𝒫 𝐽 ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) )
180 179 3exp ( 𝐽 ∈ Top → ( 𝑋 = 𝑎 → ( 𝑎 ∈ 𝒫 𝐽 → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) ) )
181 180 com24 ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ( 𝑎 ∈ 𝒫 𝐽 → ( 𝑋 = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) ) )
182 181 ralrimdv ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → ∀ 𝑎 ∈ 𝒫 𝐽 ( 𝑋 = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
183 1 iscmp ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑎 ∈ 𝒫 𝐽 ( 𝑋 = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ) )
184 183 baibr ( 𝐽 ∈ Top → ( ∀ 𝑎 ∈ 𝒫 𝐽 ( 𝑋 = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = 𝑏 ) ↔ 𝐽 ∈ Comp ) )
185 182 184 sylibd ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) → 𝐽 ∈ Comp ) )
186 14 185 impbid2 ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = 𝑐 → ∃ 𝑑 ∈ PtFin ( 𝑑𝑐𝑋 = 𝑑 ) ) ) )