| Step |
Hyp |
Ref |
Expression |
| 1 |
|
comppfsc.1 |
|
| 2 |
|
elpwi |
|
| 3 |
1
|
cmpcov |
|
| 4 |
|
elfpw |
|
| 5 |
|
finptfin |
|
| 6 |
5
|
anim1i |
|
| 7 |
6
|
anassrs |
|
| 8 |
7
|
ancom1s |
|
| 9 |
4 8
|
sylanb |
|
| 10 |
9
|
reximi2 |
|
| 11 |
3 10
|
syl |
|
| 12 |
11
|
3exp |
|
| 13 |
2 12
|
syl5 |
|
| 14 |
13
|
ralrimiv |
|
| 15 |
|
elpwi |
|
| 16 |
|
0elpw |
|
| 17 |
|
0fi |
|
| 18 |
16 17
|
elini |
|
| 19 |
|
unieq |
|
| 20 |
|
uni0 |
|
| 21 |
19 20
|
eqtrdi |
|
| 22 |
21
|
rspceeqv |
|
| 23 |
18 22
|
mpan |
|
| 24 |
23
|
a1i13 |
|
| 25 |
|
n0 |
|
| 26 |
|
simp2 |
|
| 27 |
26
|
eleq2d |
|
| 28 |
27
|
biimpd |
|
| 29 |
|
eluni2 |
|
| 30 |
28 29
|
imbitrdi |
|
| 31 |
|
simpl3 |
|
| 32 |
|
simprl |
|
| 33 |
31 32
|
sseldd |
|
| 34 |
|
elssuni |
|
| 35 |
34 1
|
sseqtrrdi |
|
| 36 |
33 35
|
syl |
|
| 37 |
36
|
ralrimivw |
|
| 38 |
|
iunss |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
|
ssequn1 |
|
| 41 |
39 40
|
sylib |
|
| 42 |
|
simpl2 |
|
| 43 |
|
uniiun |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
44
|
uneq2d |
|
| 46 |
41 45
|
eqtr3d |
|
| 47 |
|
iunun |
|
| 48 |
|
vex |
|
| 49 |
|
vex |
|
| 50 |
48 49
|
unex |
|
| 51 |
50
|
dfiun3 |
|
| 52 |
47 51
|
eqtr3i |
|
| 53 |
46 52
|
eqtrdi |
|
| 54 |
|
simpll1 |
|
| 55 |
33
|
adantr |
|
| 56 |
31
|
sselda |
|
| 57 |
|
unopn |
|
| 58 |
54 55 56 57
|
syl3anc |
|
| 59 |
58
|
fmpttd |
|
| 60 |
59
|
frnd |
|
| 61 |
|
elpw2g |
|
| 62 |
61
|
3ad2ant1 |
|
| 63 |
62
|
adantr |
|
| 64 |
60 63
|
mpbird |
|
| 65 |
|
unieq |
|
| 66 |
65
|
eqeq2d |
|
| 67 |
|
sseq2 |
|
| 68 |
67
|
anbi1d |
|
| 69 |
68
|
rexbidv |
|
| 70 |
66 69
|
imbi12d |
|
| 71 |
70
|
rspcv |
|
| 72 |
64 71
|
syl |
|
| 73 |
53 72
|
mpid |
|
| 74 |
|
simprr |
|
| 75 |
|
ssel2 |
|
| 76 |
75
|
3ad2antl3 |
|
| 77 |
76
|
adantrr |
|
| 78 |
|
elunii |
|
| 79 |
74 77 78
|
syl2anc |
|
| 80 |
79 1
|
eleqtrrdi |
|
| 81 |
80
|
adantr |
|
| 82 |
|
simprr |
|
| 83 |
81 82
|
eleqtrd |
|
| 84 |
|
eqid |
|
| 85 |
84
|
ptfinfin |
|
| 86 |
85
|
expcom |
|
| 87 |
83 86
|
syl |
|
| 88 |
|
simprl |
|
| 89 |
|
elun1 |
|
| 90 |
89
|
ad2antll |
|
| 91 |
90
|
ralrimivw |
|
| 92 |
50
|
rgenw |
|
| 93 |
|
eqid |
|
| 94 |
|
eleq2 |
|
| 95 |
93 94
|
ralrnmptw |
|
| 96 |
92 95
|
ax-mp |
|
| 97 |
91 96
|
sylibr |
|
| 98 |
97
|
adantr |
|
| 99 |
|
ssralv |
|
| 100 |
88 98 99
|
sylc |
|
| 101 |
|
rabid2 |
|
| 102 |
100 101
|
sylibr |
|
| 103 |
102
|
eleq1d |
|
| 104 |
103
|
biimprd |
|
| 105 |
93
|
rnmpt |
|
| 106 |
88 105
|
sseqtrdi |
|
| 107 |
|
ssabral |
|
| 108 |
106 107
|
sylib |
|
| 109 |
|
uneq2 |
|
| 110 |
109
|
eqeq2d |
|
| 111 |
110
|
ac6sfi |
|
| 112 |
111
|
expcom |
|
| 113 |
108 112
|
syl |
|
| 114 |
|
frn |
|
| 115 |
114
|
adantr |
|
| 116 |
115
|
ad2antll |
|
| 117 |
32
|
ad2antrr |
|
| 118 |
117
|
snssd |
|
| 119 |
116 118
|
unssd |
|
| 120 |
|
simprl |
|
| 121 |
|
simprrl |
|
| 122 |
121
|
ffnd |
|
| 123 |
|
dffn4 |
|
| 124 |
122 123
|
sylib |
|
| 125 |
|
fofi |
|
| 126 |
120 124 125
|
syl2anc |
|
| 127 |
|
snfi |
|
| 128 |
|
unfi |
|
| 129 |
126 127 128
|
sylancl |
|
| 130 |
|
elfpw |
|
| 131 |
119 129 130
|
sylanbrc |
|
| 132 |
|
simplrr |
|
| 133 |
|
uniiun |
|
| 134 |
|
simprrr |
|
| 135 |
|
iuneq2 |
|
| 136 |
134 135
|
syl |
|
| 137 |
133 136
|
eqtrid |
|
| 138 |
132 137
|
eqtrd |
|
| 139 |
|
ssun2 |
|
| 140 |
|
vsnid |
|
| 141 |
139 140
|
sselii |
|
| 142 |
|
elssuni |
|
| 143 |
141 142
|
ax-mp |
|
| 144 |
|
fvssunirn |
|
| 145 |
|
ssun1 |
|
| 146 |
145
|
unissi |
|
| 147 |
144 146
|
sstri |
|
| 148 |
143 147
|
unssi |
|
| 149 |
148
|
rgenw |
|
| 150 |
|
iunss |
|
| 151 |
149 150
|
mpbir |
|
| 152 |
138 151
|
eqsstrdi |
|
| 153 |
31
|
ad2antrr |
|
| 154 |
116 153
|
sstrd |
|
| 155 |
33
|
ad2antrr |
|
| 156 |
155
|
snssd |
|
| 157 |
154 156
|
unssd |
|
| 158 |
|
uniss |
|
| 159 |
158 1
|
sseqtrrdi |
|
| 160 |
157 159
|
syl |
|
| 161 |
152 160
|
eqssd |
|
| 162 |
|
unieq |
|
| 163 |
162
|
rspceeqv |
|
| 164 |
131 161 163
|
syl2anc |
|
| 165 |
164
|
expr |
|
| 166 |
165
|
exlimdv |
|
| 167 |
166
|
ex |
|
| 168 |
113 167
|
mpdd |
|
| 169 |
87 104 168
|
3syld |
|
| 170 |
169
|
ex |
|
| 171 |
170
|
com23 |
|
| 172 |
171
|
rexlimdv |
|
| 173 |
73 172
|
syld |
|
| 174 |
173
|
rexlimdvaa |
|
| 175 |
30 174
|
syld |
|
| 176 |
175
|
exlimdv |
|
| 177 |
25 176
|
biimtrid |
|
| 178 |
24 177
|
pm2.61dne |
|
| 179 |
15 178
|
syl3an3 |
|
| 180 |
179
|
3exp |
|
| 181 |
180
|
com24 |
|
| 182 |
181
|
ralrimdv |
|
| 183 |
1
|
iscmp |
|
| 184 |
183
|
baibr |
|
| 185 |
182 184
|
sylibd |
|
| 186 |
14 185
|
impbid2 |
|