Step |
Hyp |
Ref |
Expression |
1 |
|
dissnref.c |
⊢ 𝐶 = { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } |
2 |
|
distop |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top ) |
3 |
|
eqidd |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 = 𝑋 ) |
4 |
|
snelpwi |
⊢ ( 𝑧 ∈ 𝑋 → { 𝑧 } ∈ 𝒫 𝑋 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → { 𝑧 } ∈ 𝒫 𝑋 ) |
6 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
7 |
6
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ { 𝑧 } ) |
8 |
|
nfv |
⊢ Ⅎ 𝑢 ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) |
9 |
|
nfrab1 |
⊢ Ⅎ 𝑢 { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } |
10 |
|
nfcv |
⊢ Ⅎ 𝑢 { { 𝑧 } } |
11 |
1
|
abeq2i |
⊢ ( 𝑢 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) |
12 |
11
|
anbi1i |
⊢ ( ( 𝑢 ∈ 𝐶 ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ↔ ( ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ) |
13 |
|
simpr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑢 = { 𝑥 } ) |
14 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ 𝑥 ≠ 𝑧 ) → 𝑢 = { 𝑥 } ) |
15 |
14
|
ineq1d |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ 𝑥 ≠ 𝑧 ) → ( 𝑢 ∩ { 𝑧 } ) = ( { 𝑥 } ∩ { 𝑧 } ) ) |
16 |
|
disjsn2 |
⊢ ( 𝑥 ≠ 𝑧 → ( { 𝑥 } ∩ { 𝑧 } ) = ∅ ) |
17 |
16
|
adantl |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ 𝑥 ≠ 𝑧 ) → ( { 𝑥 } ∩ { 𝑧 } ) = ∅ ) |
18 |
15 17
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ 𝑥 ≠ 𝑧 ) → ( 𝑢 ∩ { 𝑧 } ) = ∅ ) |
19 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ 𝑥 ≠ 𝑧 ) → ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) |
20 |
19
|
neneqd |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ 𝑥 ≠ 𝑧 ) → ¬ ( 𝑢 ∩ { 𝑧 } ) = ∅ ) |
21 |
18 20
|
pm2.65da |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → ¬ 𝑥 ≠ 𝑧 ) |
22 |
|
nne |
⊢ ( ¬ 𝑥 ≠ 𝑧 ↔ 𝑥 = 𝑧 ) |
23 |
21 22
|
sylib |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑥 = 𝑧 ) |
24 |
23
|
sneqd |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → { 𝑥 } = { 𝑧 } ) |
25 |
13 24
|
eqtrd |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑢 = { 𝑧 } ) |
26 |
25
|
r19.29an |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ∧ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) → 𝑢 = { 𝑧 } ) |
27 |
26
|
an32s |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) → 𝑢 = { 𝑧 } ) |
28 |
27
|
anasss |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ ( ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ) → 𝑢 = { 𝑧 } ) |
29 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
30 |
29
|
rspceeqv |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑢 = { 𝑧 } ) → ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) |
31 |
30
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑢 = { 𝑧 } ) → ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) |
32 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑢 = { 𝑧 } ) → 𝑢 = { 𝑧 } ) |
33 |
32
|
ineq1d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑢 = { 𝑧 } ) → ( 𝑢 ∩ { 𝑧 } ) = ( { 𝑧 } ∩ { 𝑧 } ) ) |
34 |
|
inidm |
⊢ ( { 𝑧 } ∩ { 𝑧 } ) = { 𝑧 } |
35 |
33 34
|
eqtrdi |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑢 = { 𝑧 } ) → ( 𝑢 ∩ { 𝑧 } ) = { 𝑧 } ) |
36 |
|
vex |
⊢ 𝑧 ∈ V |
37 |
36
|
snnz |
⊢ { 𝑧 } ≠ ∅ |
38 |
37
|
a1i |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑢 = { 𝑧 } ) → { 𝑧 } ≠ ∅ ) |
39 |
35 38
|
eqnetrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑢 = { 𝑧 } ) → ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) |
40 |
31 39
|
jca |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑢 = { 𝑧 } ) → ( ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ) |
41 |
28 40
|
impbida |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → ( ( ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ↔ 𝑢 = { 𝑧 } ) ) |
42 |
12 41
|
syl5bb |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑢 ∈ 𝐶 ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ↔ 𝑢 = { 𝑧 } ) ) |
43 |
|
rabid |
⊢ ( 𝑢 ∈ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } ↔ ( 𝑢 ∈ 𝐶 ∧ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ) |
44 |
|
velsn |
⊢ ( 𝑢 ∈ { { 𝑧 } } ↔ 𝑢 = { 𝑧 } ) |
45 |
42 43 44
|
3bitr4g |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑢 ∈ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } ↔ 𝑢 ∈ { { 𝑧 } } ) ) |
46 |
8 9 10 45
|
eqrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } = { { 𝑧 } } ) |
47 |
|
snfi |
⊢ { { 𝑧 } } ∈ Fin |
48 |
46 47
|
eqeltrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } ∈ Fin ) |
49 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑧 } → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ { 𝑧 } ) ) |
50 |
|
ineq2 |
⊢ ( 𝑦 = { 𝑧 } → ( 𝑢 ∩ 𝑦 ) = ( 𝑢 ∩ { 𝑧 } ) ) |
51 |
50
|
neeq1d |
⊢ ( 𝑦 = { 𝑧 } → ( ( 𝑢 ∩ 𝑦 ) ≠ ∅ ↔ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ ) ) |
52 |
51
|
rabbidv |
⊢ ( 𝑦 = { 𝑧 } → { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ 𝑦 ) ≠ ∅ } = { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } ) |
53 |
52
|
eleq1d |
⊢ ( 𝑦 = { 𝑧 } → ( { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ↔ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } ∈ Fin ) ) |
54 |
49 53
|
anbi12d |
⊢ ( 𝑦 = { 𝑧 } → ( ( 𝑧 ∈ 𝑦 ∧ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑧 ∈ { 𝑧 } ∧ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } ∈ Fin ) ) ) |
55 |
54
|
rspcev |
⊢ ( ( { 𝑧 } ∈ 𝒫 𝑋 ∧ ( 𝑧 ∈ { 𝑧 } ∧ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ { 𝑧 } ) ≠ ∅ } ∈ Fin ) ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑧 ∈ 𝑦 ∧ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) |
56 |
5 7 48 55
|
syl12anc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑧 ∈ 𝑦 ∧ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) |
57 |
56
|
ralrimiva |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑧 ∈ 𝑦 ∧ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) |
58 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
59 |
58
|
eqcomi |
⊢ 𝑋 = ∪ 𝒫 𝑋 |
60 |
1
|
unisngl |
⊢ 𝑋 = ∪ 𝐶 |
61 |
59 60
|
islocfin |
⊢ ( 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ∃ 𝑦 ∈ 𝒫 𝑋 ( 𝑧 ∈ 𝑦 ∧ { 𝑢 ∈ 𝐶 ∣ ( 𝑢 ∩ 𝑦 ) ≠ ∅ } ∈ Fin ) ) ) |
62 |
2 3 57 61
|
syl3anbrc |
⊢ ( 𝑋 ∈ 𝑉 → 𝐶 ∈ ( LocFin ‘ 𝒫 𝑋 ) ) |