Step |
Hyp |
Ref |
Expression |
1 |
|
dissnref.c |
⊢ 𝐶 = { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } |
2 |
1
|
unieqi |
⊢ ∪ 𝐶 = ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } |
3 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) → 𝑦 ∈ 𝑢 ) |
4 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) → 𝑢 = { 𝑥 } ) |
5 |
3 4
|
eleqtrd |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) → 𝑦 ∈ { 𝑥 } ) |
6 |
5
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) → 𝑦 ∈ { 𝑥 } ) |
7 |
|
eqid |
⊢ { 𝑥 } = { 𝑥 } |
8 |
|
snex |
⊢ { 𝑥 } ∈ V |
9 |
|
eleq2 |
⊢ ( 𝑢 = { 𝑥 } → ( 𝑦 ∈ 𝑢 ↔ 𝑦 ∈ { 𝑥 } ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑢 = { 𝑥 } → ( 𝑢 = { 𝑥 } ↔ { 𝑥 } = { 𝑥 } ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ↔ ( 𝑦 ∈ { 𝑥 } ∧ { 𝑥 } = { 𝑥 } ) ) ) |
12 |
8 11
|
spcev |
⊢ ( ( 𝑦 ∈ { 𝑥 } ∧ { 𝑥 } = { 𝑥 } ) → ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ) |
13 |
7 12
|
mpan2 |
⊢ ( 𝑦 ∈ { 𝑥 } → ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ) |
14 |
6 13
|
impbii |
⊢ ( ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ↔ 𝑦 ∈ { 𝑥 } ) |
15 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) |
16 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
17 |
14 15 16
|
3bitri |
⊢ ( ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ↔ 𝑥 = 𝑦 ) |
18 |
17
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑋 𝑥 = 𝑦 ) |
19 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝑋 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ↔ ( 𝑦 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) ) |
20 |
19
|
exbii |
⊢ ( ∃ 𝑢 ∃ 𝑥 ∈ 𝑋 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ↔ ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) ) |
21 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ↔ ∃ 𝑢 ∃ 𝑥 ∈ 𝑋 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ) |
22 |
|
eluniab |
⊢ ( 𝑦 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ↔ ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) ) |
23 |
20 21 22
|
3bitr4ri |
⊢ ( 𝑦 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ 𝑢 = { 𝑥 } ) ) |
24 |
|
risset |
⊢ ( 𝑦 ∈ 𝑋 ↔ ∃ 𝑥 ∈ 𝑋 𝑥 = 𝑦 ) |
25 |
18 23 24
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ↔ 𝑦 ∈ 𝑋 ) |
26 |
25
|
eqriv |
⊢ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } = 𝑋 |
27 |
2 26
|
eqtr2i |
⊢ 𝑋 = ∪ 𝐶 |