Step |
Hyp |
Ref |
Expression |
1 |
|
dissnref.c |
⊢ 𝐶 = { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } |
2 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) → ∪ 𝑌 = 𝑋 ) |
3 |
1
|
unisngl |
⊢ 𝑋 = ∪ 𝐶 |
4 |
2 3
|
eqtrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) → ∪ 𝑌 = ∪ 𝐶 ) |
5 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑢 = { 𝑥 } ) |
6 |
|
simprr |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑥 ∈ 𝑦 ) |
7 |
6
|
snssd |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑦 ) ) → { 𝑥 } ⊆ 𝑦 ) |
8 |
5 7
|
eqsstrd |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑢 ⊆ 𝑦 ) |
9 |
|
simplr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑥 ∈ 𝑋 ) |
10 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → ∪ 𝑌 = 𝑋 ) |
11 |
9 10
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑥 ∈ ∪ 𝑌 ) |
12 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑌 ↔ ∃ 𝑦 ∈ 𝑌 𝑥 ∈ 𝑦 ) |
13 |
11 12
|
sylib |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → ∃ 𝑦 ∈ 𝑌 𝑥 ∈ 𝑦 ) |
14 |
8 13
|
reximddv |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → ∃ 𝑦 ∈ 𝑌 𝑢 ⊆ 𝑦 ) |
15 |
1
|
abeq2i |
⊢ ( 𝑢 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) |
16 |
15
|
biimpi |
⊢ ( 𝑢 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ) |
18 |
14 17
|
r19.29a |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) ∧ 𝑢 ∈ 𝐶 ) → ∃ 𝑦 ∈ 𝑌 𝑢 ⊆ 𝑦 ) |
19 |
18
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) → ∀ 𝑢 ∈ 𝐶 ∃ 𝑦 ∈ 𝑌 𝑢 ⊆ 𝑦 ) |
20 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V ) |
21 |
|
simpr |
⊢ ( ( ( 𝑢 ∈ 𝐶 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑢 = { 𝑥 } ) |
22 |
|
snelpwi |
⊢ ( 𝑥 ∈ 𝑋 → { 𝑥 } ∈ 𝒫 𝑋 ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( 𝑢 ∈ 𝐶 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
24 |
21 23
|
eqeltrd |
⊢ ( ( ( 𝑢 ∈ 𝐶 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑢 ∈ 𝒫 𝑋 ) |
25 |
24 16
|
r19.29a |
⊢ ( 𝑢 ∈ 𝐶 → 𝑢 ∈ 𝒫 𝑋 ) |
26 |
25
|
ssriv |
⊢ 𝐶 ⊆ 𝒫 𝑋 |
27 |
26
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 𝐶 ⊆ 𝒫 𝑋 ) |
28 |
20 27
|
ssexd |
⊢ ( 𝑋 ∈ 𝑉 → 𝐶 ∈ V ) |
29 |
28
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) → 𝐶 ∈ V ) |
30 |
|
eqid |
⊢ ∪ 𝐶 = ∪ 𝐶 |
31 |
|
eqid |
⊢ ∪ 𝑌 = ∪ 𝑌 |
32 |
30 31
|
isref |
⊢ ( 𝐶 ∈ V → ( 𝐶 Ref 𝑌 ↔ ( ∪ 𝑌 = ∪ 𝐶 ∧ ∀ 𝑢 ∈ 𝐶 ∃ 𝑦 ∈ 𝑌 𝑢 ⊆ 𝑦 ) ) ) |
33 |
29 32
|
syl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) → ( 𝐶 Ref 𝑌 ↔ ( ∪ 𝑌 = ∪ 𝐶 ∧ ∀ 𝑢 ∈ 𝐶 ∃ 𝑦 ∈ 𝑌 𝑢 ⊆ 𝑦 ) ) ) |
34 |
4 19 33
|
mpbir2and |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋 ) → 𝐶 Ref 𝑌 ) |