| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dissnref.c | ⊢ 𝐶  =  { 𝑢  ∣  ∃ 𝑥  ∈  𝑋 𝑢  =  { 𝑥 } } | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  →  ∪  𝑌  =  𝑋 ) | 
						
							| 3 | 1 | unisngl | ⊢ 𝑋  =  ∪  𝐶 | 
						
							| 4 | 2 3 | eqtrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  →  ∪  𝑌  =  ∪  𝐶 ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  ∧  ( 𝑦  ∈  𝑌  ∧  𝑥  ∈  𝑦 ) )  →  𝑢  =  { 𝑥 } ) | 
						
							| 6 |  | simprr | ⊢ ( ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  ∧  ( 𝑦  ∈  𝑌  ∧  𝑥  ∈  𝑦 ) )  →  𝑥  ∈  𝑦 ) | 
						
							| 7 | 6 | snssd | ⊢ ( ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  ∧  ( 𝑦  ∈  𝑌  ∧  𝑥  ∈  𝑦 ) )  →  { 𝑥 }  ⊆  𝑦 ) | 
						
							| 8 | 5 7 | eqsstrd | ⊢ ( ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  ∧  ( 𝑦  ∈  𝑌  ∧  𝑥  ∈  𝑦 ) )  →  𝑢  ⊆  𝑦 ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  𝑥  ∈  𝑋 ) | 
						
							| 10 |  | simp-4r | ⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  ∪  𝑌  =  𝑋 ) | 
						
							| 11 | 9 10 | eleqtrrd | ⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  𝑥  ∈  ∪  𝑌 ) | 
						
							| 12 |  | eluni2 | ⊢ ( 𝑥  ∈  ∪  𝑌  ↔  ∃ 𝑦  ∈  𝑌 𝑥  ∈  𝑦 ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  ∃ 𝑦  ∈  𝑌 𝑥  ∈  𝑦 ) | 
						
							| 14 | 8 13 | reximddv | ⊢ ( ( ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  ∃ 𝑦  ∈  𝑌 𝑢  ⊆  𝑦 ) | 
						
							| 15 | 1 | eqabri | ⊢ ( 𝑢  ∈  𝐶  ↔  ∃ 𝑥  ∈  𝑋 𝑢  =  { 𝑥 } ) | 
						
							| 16 | 15 | biimpi | ⊢ ( 𝑢  ∈  𝐶  →  ∃ 𝑥  ∈  𝑋 𝑢  =  { 𝑥 } ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  →  ∃ 𝑥  ∈  𝑋 𝑢  =  { 𝑥 } ) | 
						
							| 18 | 14 17 | r19.29a | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  ∧  𝑢  ∈  𝐶 )  →  ∃ 𝑦  ∈  𝑌 𝑢  ⊆  𝑦 ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  →  ∀ 𝑢  ∈  𝐶 ∃ 𝑦  ∈  𝑌 𝑢  ⊆  𝑦 ) | 
						
							| 20 |  | pwexg | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  𝑋  ∈  V ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝑢  ∈  𝐶  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  𝑢  =  { 𝑥 } ) | 
						
							| 22 |  | snelpwi | ⊢ ( 𝑥  ∈  𝑋  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 23 | 22 | ad2antlr | ⊢ ( ( ( 𝑢  ∈  𝐶  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 24 | 21 23 | eqeltrd | ⊢ ( ( ( 𝑢  ∈  𝐶  ∧  𝑥  ∈  𝑋 )  ∧  𝑢  =  { 𝑥 } )  →  𝑢  ∈  𝒫  𝑋 ) | 
						
							| 25 | 24 16 | r19.29a | ⊢ ( 𝑢  ∈  𝐶  →  𝑢  ∈  𝒫  𝑋 ) | 
						
							| 26 | 25 | ssriv | ⊢ 𝐶  ⊆  𝒫  𝑋 | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  𝐶  ⊆  𝒫  𝑋 ) | 
						
							| 28 | 20 27 | ssexd | ⊢ ( 𝑋  ∈  𝑉  →  𝐶  ∈  V ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  →  𝐶  ∈  V ) | 
						
							| 30 |  | eqid | ⊢ ∪  𝐶  =  ∪  𝐶 | 
						
							| 31 |  | eqid | ⊢ ∪  𝑌  =  ∪  𝑌 | 
						
							| 32 | 30 31 | isref | ⊢ ( 𝐶  ∈  V  →  ( 𝐶 Ref 𝑌  ↔  ( ∪  𝑌  =  ∪  𝐶  ∧  ∀ 𝑢  ∈  𝐶 ∃ 𝑦  ∈  𝑌 𝑢  ⊆  𝑦 ) ) ) | 
						
							| 33 | 29 32 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  →  ( 𝐶 Ref 𝑌  ↔  ( ∪  𝑌  =  ∪  𝐶  ∧  ∀ 𝑢  ∈  𝐶 ∃ 𝑦  ∈  𝑌 𝑢  ⊆  𝑦 ) ) ) | 
						
							| 34 | 4 19 33 | mpbir2and | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∪  𝑌  =  𝑋 )  →  𝐶 Ref 𝑌 ) |