Metamath Proof Explorer


Theorem dissnref

Description: The set of singletons is a refinement of any open covering of the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020)

Ref Expression
Hypothesis dissnref.c 𝐶 = { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } }
Assertion dissnref ( ( 𝑋𝑉 𝑌 = 𝑋 ) → 𝐶 Ref 𝑌 )

Proof

Step Hyp Ref Expression
1 dissnref.c 𝐶 = { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } }
2 simpr ( ( 𝑋𝑉 𝑌 = 𝑋 ) → 𝑌 = 𝑋 )
3 1 unisngl 𝑋 = 𝐶
4 2 3 eqtrdi ( ( 𝑋𝑉 𝑌 = 𝑋 ) → 𝑌 = 𝐶 )
5 simplr ( ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦𝑌𝑥𝑦 ) ) → 𝑢 = { 𝑥 } )
6 simprr ( ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦𝑌𝑥𝑦 ) ) → 𝑥𝑦 )
7 6 snssd ( ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦𝑌𝑥𝑦 ) ) → { 𝑥 } ⊆ 𝑦 )
8 5 7 eqsstrd ( ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) ∧ ( 𝑦𝑌𝑥𝑦 ) ) → 𝑢𝑦 )
9 simplr ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑥𝑋 )
10 simp-4r ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑌 = 𝑋 )
11 9 10 eleqtrrd ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑥 𝑌 )
12 eluni2 ( 𝑥 𝑌 ↔ ∃ 𝑦𝑌 𝑥𝑦 )
13 11 12 sylib ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → ∃ 𝑦𝑌 𝑥𝑦 )
14 8 13 reximddv ( ( ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) ∧ 𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → ∃ 𝑦𝑌 𝑢𝑦 )
15 1 abeq2i ( 𝑢𝐶 ↔ ∃ 𝑥𝑋 𝑢 = { 𝑥 } )
16 15 biimpi ( 𝑢𝐶 → ∃ 𝑥𝑋 𝑢 = { 𝑥 } )
17 16 adantl ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) → ∃ 𝑥𝑋 𝑢 = { 𝑥 } )
18 14 17 r19.29a ( ( ( 𝑋𝑉 𝑌 = 𝑋 ) ∧ 𝑢𝐶 ) → ∃ 𝑦𝑌 𝑢𝑦 )
19 18 ralrimiva ( ( 𝑋𝑉 𝑌 = 𝑋 ) → ∀ 𝑢𝐶𝑦𝑌 𝑢𝑦 )
20 pwexg ( 𝑋𝑉 → 𝒫 𝑋 ∈ V )
21 simpr ( ( ( 𝑢𝐶𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑢 = { 𝑥 } )
22 snelpwi ( 𝑥𝑋 → { 𝑥 } ∈ 𝒫 𝑋 )
23 22 ad2antlr ( ( ( 𝑢𝐶𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → { 𝑥 } ∈ 𝒫 𝑋 )
24 21 23 eqeltrd ( ( ( 𝑢𝐶𝑥𝑋 ) ∧ 𝑢 = { 𝑥 } ) → 𝑢 ∈ 𝒫 𝑋 )
25 24 16 r19.29a ( 𝑢𝐶𝑢 ∈ 𝒫 𝑋 )
26 25 ssriv 𝐶 ⊆ 𝒫 𝑋
27 26 a1i ( 𝑋𝑉𝐶 ⊆ 𝒫 𝑋 )
28 20 27 ssexd ( 𝑋𝑉𝐶 ∈ V )
29 28 adantr ( ( 𝑋𝑉 𝑌 = 𝑋 ) → 𝐶 ∈ V )
30 eqid 𝐶 = 𝐶
31 eqid 𝑌 = 𝑌
32 30 31 isref ( 𝐶 ∈ V → ( 𝐶 Ref 𝑌 ↔ ( 𝑌 = 𝐶 ∧ ∀ 𝑢𝐶𝑦𝑌 𝑢𝑦 ) ) )
33 29 32 syl ( ( 𝑋𝑉 𝑌 = 𝑋 ) → ( 𝐶 Ref 𝑌 ↔ ( 𝑌 = 𝐶 ∧ ∀ 𝑢𝐶𝑦𝑌 𝑢𝑦 ) ) )
34 4 19 33 mpbir2and ( ( 𝑋𝑉 𝑌 = 𝑋 ) → 𝐶 Ref 𝑌 )