Metamath Proof Explorer


Theorem locfinnei

Description: A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypothesis locfinnei.1 X = J
Assertion locfinnei A LocFin J P X n J P n s A | s n Fin

Proof

Step Hyp Ref Expression
1 locfinnei.1 X = J
2 eqid A = A
3 1 2 islocfin A LocFin J J Top X = A x X n J x n s A | s n Fin
4 3 simp3bi A LocFin J x X n J x n s A | s n Fin
5 eleq1 x = P x n P n
6 5 anbi1d x = P x n s A | s n Fin P n s A | s n Fin
7 6 rexbidv x = P n J x n s A | s n Fin n J P n s A | s n Fin
8 7 rspccva x X n J x n s A | s n Fin P X n J P n s A | s n Fin
9 4 8 sylan A LocFin J P X n J P n s A | s n Fin