| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lplnexat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
lplnexat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
lplnexat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
lplnexat.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
| 5 |
|
lplnexat.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
| 6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → 𝐾 ∈ HL ) |
| 7 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → 𝑌 ∈ 𝑁 ) |
| 8 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → 𝑋 ∈ 𝑃 ) |
| 9 |
6 7 8
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) → ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃 ) ) |
| 10 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
| 11 |
1 10 4 5
|
llncvrlpln2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ) |
| 12 |
9 11
|
sylan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ) |
| 13 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ HL ) |
| 14 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ∈ 𝑁 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 16 |
15 4
|
llnbase |
⊢ ( 𝑌 ∈ 𝑁 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
14 16
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑋 ∈ 𝑃 ) |
| 19 |
15 5
|
lplnbase |
⊢ ( 𝑋 ∈ 𝑃 → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
15 1 2 10 3
|
cvrval3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ) ) |
| 22 |
13 17 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ) ) |
| 23 |
|
eqcom |
⊢ ( ( 𝑌 ∨ 𝑞 ) = 𝑋 ↔ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) |
| 24 |
23
|
anbi2i |
⊢ ( ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ↔ ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) |
| 25 |
24
|
rexbii |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ ( 𝑌 ∨ 𝑞 ) = 𝑋 ) ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) |
| 26 |
22 25
|
bitrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ( ⋖ ‘ 𝐾 ) 𝑋 ↔ ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) ) |
| 27 |
12 26
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁 ) ∧ 𝑌 ≤ 𝑋 ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = ( 𝑌 ∨ 𝑞 ) ) ) |